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Abstract—Adopting emerging non-volatile memory (NVM) 
technologies is a viable solution to minimize the increasing 
memory leakage power in today’s embedded systems. However, 
in order to take advantage of the many benefits in NVMs, 
software must account for their high write overheads. This paper 
presents AVid, an annotation driven video decoding technique for 
hybrid memory subsystems. AVid exploits the physical 
characteristics of NVMs by extracting video decoder access 
patterns and uses this meta-information to minimize write 
overheads, thereby improving energy savings and performance. 
Our experimental results on an annotation-aware H.264 codec 
show that our technique is able to achieve execution time and 
energy reduction by up to 40.8% and 39.7% respectively when 
applied to H.264 decoding. 

Keywords: Hybrid Memories; Energy Efficiency; H.264; Video 
Decoding; Software Annotations 

I.  INTRODUCTION 
The ever-increasing demands for media-rich applications 

(e.g., video streaming), coupled with the need to manage 
power and energy have motivated the move towards multi-
core platforms. While mobile platforms and their desktop 
counter parts both need to deal with the evolving software 
stack and new computing substrates, they have very different 
energy budgets; for mobile platforms there is a critical need 
for the embedded software stack to account for its tight energy 
budget. In today’s platforms, the power consumption of the 
whole system is primarily dominated by the memory hierarchy 
[1]. Moreover, ITRS predicts that over the next decade 
memory static/leakage power will continue to surpass dynamic 
power consumption [2][3].  

SRAM-based memories are a major source of leakage 
power in the system [4] as they may consume up to 90% of the 
total on-chip area [2] and up to 70% of total power consumed 
by the system [5], which is aggravated by the move towards 
multi- and many-core platforms. To reduce the static power of 
the memory subsystem, researchers have proposed the use of 
Non Volatile Memories (NVMs) as an alternative to SRAM 
on-chip memories and DRAM off-chip memories [6][7][8]. 
NVMs (e.g. PCRAMs, MRAMs) have high densities, low 
leakage power and comparable read latencies and read 
dynamic power with respect to traditional memories. One 
major problem with NVMs is the expensive write operation, 
which incurs high write latency and high write dynamic 
power. To mitigate the drawbacks of non-volatile memories 
researchers have proposed hybrid memory hierarchies that 
consist of a combination of SRAM, DRAM, and NVM 

technologies. There have been several research efforts focused 
on deploying hybrid memory hierarchies for caches [6][8][9], 
on-chip memories [10][11] and main memories [12] [13]. 

In order to better exploit hybrid memory hierarchies the 
runtime system needs higher-level information (e.g., compiler, 
application) to tune the application’s memory allocation-
decisions based on their characteristics. The runtime system 
could also collect statistically information at runtime to react 
to the application’s memory usage patterns. This however 
takes time and may not necessarily predict future access 
patterns, thereby motivating the need for both offline high 
level information and online characterization. 

Software annotations have been extensively used to guide 
run-time systems to make smart resource management 
decisions to increase system performance or minimize power 
consumption [14][15][16][17].  However, to the best of our 
knowledge, no previous efforts have focused on software 
annotations to exploit the features of hybrid memory 
organizations. 

This work proposes AVid, an annotation driven video 
decoding scheme for hybrid memory subsystems. AVid 
focuses on extracting meta-information from highly 
predictable, data intensive applications (e.g., video decoding) 
and exploits this information to make efficient run-time 
memory allocation decisions that leverage the physical 
characteristics of nonvolatile memories for energy savings and 
performance improvements. Our experimental results on an 
annotation-aware H.264 codec show that our technique is able 
to achieve execution time and energy reduction by up to 
40.8% and 39.7% respectively when applied to H.264 
decoding.  

The novel contributions of our work are that we: 
• Leverage software annotations to opportunistically exploit 

the physical characteristics of the memory hierarchy. 
• Perform run-time characterization of video streams for 

efficient data placement on hybrid memories 
• Propose a hybrid-memory-aware video codec. 

II. RELATED WORK 

A. Emerging Memory Technologies 
In the quest for reducing leakage power of traditional 

memory technologies (SRAM, DRAM), hybrid memory 
hierarchies have been proposed. Joo et al. [7] studied the use 
of PCM as an alternative to SRAM for on-chip caches. Sun et 
al. [6] proposed an SRAM-MRAM hybrid L2 cache in a 
NUCA-based 3D stacked multi-core platform. Mishra et al. [8] 
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introduced STT-RAM as an alternative to MRAM memory 
and proposed solutions at the on-chip network level to 
prioritize memory accesses and hide the overheads in write 
latencies. Wu et al. [9] studied hybrid cache architectures at a 
finer granularity and proposes a solution with various types of 
NVMs across cache levels and across the same level of the 
cache. Hu et al. [10] proposed a dynamic data allocation 
algorithm to exploit a hybrid on-chip scratch pad memory 
consisting of PCM and SRAM. Zhou et al. [13] proposed the 
use of PCM as the main memory for a 3D stacked chip. 
Dhiman et al. [12] proposed a low overhead hybrid hardware 
software solution for managing a PCRAM and DRAM main 
memory hierarchy. Wongchaowart et al. [18] used a placement 
algorithm that exploits content based signatures to mitigate 
write overheads in main memory. Mogul et al. [19] described 
Operating System support based on annotated semantic 
information for adopting hybrid memory as a solution for 
hybrid memory. Ferreira et al. [20] proposed an architecture 
that allows drop-in replacement of a conventional DRAM 
main memory with PCM. Liu et al. [21] exploited variable 
data partitioning based on statically extracted application 
characteristic in the context of hybrid main memory enabled 
DSP systems. Lee et al. [22] proposed a hybrid aware memory 
management and data migration using static analysis of 
application’s behavior. Bathen et al. [11] proposed a run-time 
memory management technique that allows a transparent 
sharing of distributed on-chip hybrid memories by using a 
hybrid aware, compiler generated and/or user assisted, 
application's address space partitioning. 

AVid is different from previous hybrid memory subsystem 
approaches in that we are able to make an informed memory 
mapping decision with virtually no overheads. Using an 
application’s input data oriented approach we exploit the 
predictable decoder access patterns by collecting metadata on 
the fly during encoding. Although AVid targets distributed 
scratchpad and non-volatile memories, our scheme may be 
extended to hybrid cache based systems [6][8][9]. 

B. Energy Efficient Decoding 
Several related efforts have proposed techniques for energy-

efficient multimedia decoding. Choi et al. [23] presented a 
DVS technique for MPEG decoding to reduce energy 
consumption while maintaining the quality of service by 
predicting the computational workload using a frame-based 
history. Based on the predicted workload the voltage and 
frequency are scaled to stretch the decoding time to the limit 
of the frame deadlines. Using a similar approach to DVS 
Cornea et al. [14] proposed a technique that performs an off-
line profiling and annotation of the stream to reduce the 
overhead of estimating the frame decoding times at runtime. 
Furthermore, in [24] the annotated meta-information is used 
for backlight adjustment of LCD displays during multimedia 
playback for improved battery life. In another approach on 
DVS for multimedia decoding Chung et al. [15] proposed the 
profiling of streams and extraction of meta-data characterizing 
execution time variations at the server side through static 
analysis. Huang et al. [17] proposed an offline bit stream 
analysis and metadata insertion, done while the multimedia 

file is downloaded to a mobile device, to capture the expected 
computational demand during decoding. More recently, 
Gheorghita et al. [25] and Hamers et al. [16] proposed a 
scenario-based voltage and frequency scaling approach for 
low energy multimedia decoding. The scenarios capture 
platform-independent multimedia decoding complexity and 
resource requirements and are annotated to the stream. 

As opposed to previous approaches to energy efficient 
multimedia decoding AVid doesn’t require static analysis of 
the application’s execution or profile classes of inputs to infer 
run-time behavior. The metadata lives in the stream and is 
specific to each input. However, our work can be 
complemented by existing DVS schemes that predict decoding 
time and energy consumption [14][15][16][23] to gain further 
energy savings. 

In summary, we take a different approach on profiling 
multimedia streams and exploit the aggregated meta-
information in an energy efficient memory allocation 
technique that leverages the unique characteristics of hybrid 
memory hierarchies. This work explores optimization 
opportunities for video decoding but can be easily extended to 
the higher class of data compression applications.  

III. MOTIVATION 

 
Figure 1: ITRS Power Consumption Trend [26] 

Figure 1 shows ITRS’ consumer portable power consumption 
trends for the next decade [26]. As we can observe, the trend 
for static power (dotter green bar) will overshadow dynamic 
power consumption (pink diagonal squares). As a result, 
designers are eager to adopt emerging non-volatile memories 
to mitigate the growing leakage power issues in today’s 
memory subsystems. Although non-volatile memories are 
viable candidates for replacing SRAM and DRAM-based 
memories due to their low leakage power, the adoption of non-
volatile memories is challenging due to fact that their write 
operation overheads in terms of energy and latency are orders 
of magnitude higher than their read operations. To illustrate 
this, Table 1 summarizes the essential parameters of two most 
common types of NVMs (MRAM and PCRAM), in 
comparison with SRAM; from this table it is clear that NVMs 
cannot be used as a drop-in replacement for classic memory 
technologies and that a different approach is needed. An 
immediate idea is hybrid-memory which tries to get the best 
from both worlds by complementing NVMs with 
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SRAMs/DRAMs. The goals of hybrid-memory hierarchy are 
to obtain reduced leakage, increased capacity, comparable 
read latency, while minimizing write overheads. To achieve 
these goals using hybrid-memories, it is critical that a software 
stack understands and exploits the special characteristics of 
these hybrid memories. 

Table 1: Parameters of memory technologies [9] 

 
Using an application oriented approach we identified video 

codecs as a good candidate for this purpose. This class of 
applications is omnipresent in current computer systems, 
ranging from server machines to mobile platforms. One issue 
in current battery constrained devices is that video codecs are 
memory, and implicitly power, hungry. For instance, the 
Decoded Picture Buffer (DPB), which is an integral data 
structure in Motion Estimation on the encoder side and Motion 
Compensation on the decoder side, can take up to 12MBs of 
memory for 720p video with 9 stored frames. Although the 
DPB is memory intensive, notice that its access patterns are 
highly predictable from the decoder’s perspective since they 
can be accurately extracted at the encoding time and 
embedded in the stream with negligible overhead. 

 
Figure 2: Frames R/W Distribution over 720p Sequences 

By profiling and analyzing the encoder’s access patterns we 
determined that frames stored in the DPB have an average 
Read-to-Write (R/W) ratio of about 3.5, which means that they 
are written once and read more than three times, and a 
maximum R/W of about 15. A more detailed distribution of 
R/W accesses over the frames of several video sequences is 
presented in Figure 2. We plotted the results over seven 720p 
sequences (S1-S7 in the horizontal axis), we aggregated the 
frames in bins based on their R/W ratio (e.g., 1:3 represents 
the frames that have a R/W ratio between 1 and 3) and show 

the percentage of frames in each bin (vertical axis). The high 
number of read accesses compared to write accesses makes the 
case for mapping this data structure to NVMs to overcome the 
disadvantages of unbalanced R/W costs. Although we will 
focus on frame level access frequency, our scheme can be 
easily extended to other levels of data granularity (e.g., Slice 
and MB level). 

With the increasing number of multi-core on-chip platforms 
researchers have proposed different approaches to exploit 
video decoding data parallelism. The most promising approach 
seems to be macro-block level parallelization, a highly 
scalable scheme. Even with the state of the art 
implementations of parallel H.264 decoding, a major 
limitation is main memory bandwidth requirements [27]. Due 
to their higher densities, NVMs are a good candidate for 
enhancing the on-chip memory space while maintaining the 
same area, and thus decreasing accesses to main memory. 

Besides increasing the on-chip memory space with minimal 
area overhead, NVMs, both on-chip and off-chip, have very 
low leakage power, thus reducing total memory consumption, 
which is an important aspect in mobile platforms. 

IV. VIDEO CODEC BACKGROUND 
Multimedia applications are a special case of streaming 

applications, which process a continuous incoming stream of 
data. Unlike general-purpose applications, multimedia 
workloads tend to have a more regular execution being 
executed in a pipelined fashion, with each stage of the pipeline 
being a well-defined algorithm. This exposes unique 
opportunities for observing and extracting execution patterns 
that can be used for content oriented power and performance 
optimizations. 

For our study we choose video processing since it is the 
most resource demanding class of multimedia applications. 
Out of the many video standards H.264/AVC stands out as 
being widely adopted due to its compression capabilities; 
however, our scheme can be easily extended to other 
standards. 

A. H.264 
The H.264/Advanced Video Coding (AVC) codec achieves 

dramatic compression ratios necessary for the storage and 
transmission of large format, high quality video.  

H.264 stream has a hierarchical structure. A stream is 
composed of Groups of Pictures (GOP): each GOP contains 
three types of frames (I, P, B), each frame can be divided in 
slices, each slice is further divided into macro-blocks of 16x16 
pixels, and each macro-block can be subdivided in partitions.  

In earlier standards only I and P frames were used for 
reference. Each P frame was predicted from the preceding I or 
P frames and each B frame was predicted from the I and/or P 
frames on either side of it. An example of ‘classic’ GOP 
structure is presented in Figure 3. The H.264 standard 
introduced new prediction structures. One example is the 
hierarchical GOP structure which enables prediction from B 
frames. Moreover, it is possible to use multiple reference 
frames for prediction, which means that the encoder can 
search up to N reference frames to find the best match for each 
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macro-block. This offers potential for improved compression 
efficiency by trading-off increased computational expense at 
the encoder and increased storage at encoder and decoder, 
since the DPB must now store N reference frames [28]. 

 
I B B P B B P B B P

 
Figure 3: Frames in a H.264 stream 

The H.264 decoder pipeline consists of four multimedia 
kernels: Entropy Decoder (ED), Inverse Discrete Cosine 
Transform (IDCT), Quantization (Q), Motion Compensation 
(MC) and the Deblocking Filter. A high level diagram of the 
decoder is given in Figure 4. A macro-block is decoded, re-
scaled and inverse transformed to form a decoded residual 
macro-block. The decoder generates the same prediction that 
was created at the encoder and adds this to the residual to 
produce a decoded macro-block. 
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Figure 4: H.264 decoder [28] 

B. Prediction 
The widespread adoption of H.264 is mainly because of its 

improved compression performance. Compared to previous 
video codecs it has a reduction of 50% in bandwidth 
requirements for a given image quality [27]. The new standard 
seeks to minimize redundancy in the compressed stream 
through extensive analysis. Much of the performance gain is 
due to the efficient prediction methods used. At the encoder 
for each macro-block a prediction is created based on an 

extensive search of previously decoded data either from the 
current frame using intra prediction or from other frames that 
have already been coded using inter prediction. The prediction 
is then extracted from the macro-block to form a residual. At 
the decoder the reverse operation is executed, the residual is 
combined with the prediction block to form the original 
macro-block value. 

The predicted macro-block is identified by: 1) a motion 
vector, which gives the position inside a specific frame, and 2) 
a reference frame index, which gives the corresponding 
reference frame. Each macro-block can have one or two 
predictions. Each reference frame is stored in the DPB and its 
lifetime is dependent on the macro-blocks in other frames 
referencing it and the display rate. 

The rate at which a frame is referenced during motion-
compensated prediction depends on the video dynamic visual 
characteristics and frame types. Generally, an I frame has a 
longer lifetime and higher reference rate than a P or B frame. 
In more dynamic videos the GOPs are shorter, thus I frames 
have shorter lifetimes.  

C. Parallel H.264 decoder 
A lot of effort has been invested in parallelizing the H.264 

decoder. Analyzing the structure of the H.264 stream, it’s 
possible to identify several levels at which data parallelism 
can be exploited: GOP level, frame level, slice level and 
macro-block level.  

The first level of parallelism is exposed by the fact that 
GOPs are processed independently in decoder’s pipeline. 
However, GOP level parallelism has tremendous memory 
requirements for HD resolution and can lead to high latencies.  

Frame level parallelism can be implemented by exploiting 
the dependencies between P and B frames, but it is not 
scalable beyond two or three concurrently processed frames 
and has high memory requirements. 

Slice level seems to be a better idea since a slice is a group 
of independently encoded macro-blocks within a frame. 
Encoding many slices per frame is beneficial when streaming 
over a lossy network due to increased error correction 
performance. However, by increasing the number of slices per 
frame the compression efficiency is affected. That is why 
H.264 videos are usually encoded with only one slice per 
frame.  Due to this reason even if slice level parallelism seems 
to be a good approach, it is not feasible in practice.  

Macro-block level exposes a finer grain data parallelism 
opportunity emerging from the fact that inter-coded blocks in 
the same frame are independent. Macro block level parallelism 
has an increased performance and scalability potential. Baker 
et al. [27] demonstrate how this can be implemented on an 
IBM Cell Broadband Engine (CBE) [29] chip multiprocessor 
by taking advantage of the platform characteristics. Their 
design uses both functional and data partitioning by mapping 
MBs from inter-coded frames onto the lightweight SPU cores 
and dedicating one additional SPU to deblocking filter. The 
general purpose PPU core manages entropy decoding, which 
is inherently not parallelizable, and intra decoding data 
dependencies. 
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V. EXPLOITING VIDEO STREAM ANNOTATIONS 
This section will cover how we exploit video stream 

annotations to efficiently manage the hybrid memory 
subsystem. Figure 5 shows a high level view of our system. 
Here we show how the meta-information is extracted during 
encoding with virtually no cost and is embedded in the stream 
payload in the form of annotations. Section V.B discusses the 
stream profiler, which is a part of the encoder and can be run 
online in case of streaming media or offline in case of stored 
media. Section V.C discusses the annotated streams, which are 
transmitted to the decoder where the reverse operation is 
executed. The annotations are extracted from the stream 
during stream decoding and handed to the runtime system, 
which dynamically maps the data structures to the preferred 
memory type. Section V.D discusses the overheads incurred 
by our technique. 

 
Figure 5: Hybrid Memory Aware Codec High Level View 

A. Target Platform and Assumptions 
Figure 6 depicts a high level view of our decoder target 

platform. We choose a chip multiprocessor design similar with 
IBM Cell Broadband Engine [29] which was proven to have 
the potential to speedup complex data intensive applications 
such as H.264 video decoding given an effective 
parallelization scheme [27]. It consists of a Power Processing 
Element (PPE), a general purpose control/OS processor, 
connected to a number of Synergistic Execution Units (SXU), 
which have extensive support for Single Instruction Multiple 
Data (SIMD) operations, via an AMBA AHB bus-based 
communication fabric. Each SXU has a local store consisting 
of a scratch pad memory (SPM) and a non-volatile memory 
(NVM). The data flow is controlled by a Direct Memory 
Access (DMA) unit. The main memory consists of DRAM and 
NVM. We chose to explore configurations that seem realistic 
in terms of memory sizes in future mobile platforms. 

We make the following assumptions: 
1. Programmers have access to the source code of the target 

video codec in order to enhance it. 
2. The platform exposes memory types (SRAM, MRAM, 

etc.) and capacities to the runtime system. 
3. The technique operates over blocks of data (e.g. 1KB 

mini-pages) such that sections of decoded frames can be 
mapped to various on-chip physical memories. 

4. All instructions/data are mapped to the on-chip/off-chip 
memories and there are no caches. 
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Figure 6: Target Platform 

B. Encoder: Aggregating Meta-information  
The decoded frame’s meta-information is collected at the 

encoding time with minimal overhead and embedded in the 
frame control data slots. The meta-information consists of 
R/W ratio for each frame in the DPB. 

Reference frames access frequencies are extracted through 
profiling during the encoder’s ME operation. Each motion 
vector is characterized by a source frame (a previously 
decoded frame or the current decoding frame when the vector 
references a previously decoded section of it), a destination 
frame (the current decoding frame) and a partition of variable 
size. Keeping track of the generated motion vectors during 
encoding we count the number of bytes read from each 
decoded frame and write to each decoding frame. Thus, our 
metric consists of a simple R/W ratio for each frame. 

The encoder embeds the annotations in the stream using 
Supplemental Enhancement Information (SEI) NAL units. As 
defined by the standard, SEI messages contain information 
that may assist decoding or displaying video but are not 
essential for constructing decoded video frames. Each 
annotation is transmitted in a separate SEI Raw Byte Sequence 
Payload (RBSP) and each SEI message is sent as a separate 
NAL Unit. To embed the metadata we use User Data 
Unregistered field, which contains user data defined by a 
Unique User ID, the contents of which are not defined by the 
standard. Each annotation contains a float number, 4 bytes, 
and we send one SEI message per frame, so the overhead is 
negligible.  

By choosing this approach our codec does not affect the 
standard and does not conflict with other codecs. Thus, a 
stream with annotated metadata can be processed by a non-
hybrid-memory aware decoder, which would simply ignore 
the User Data Unregistered field and would decode the stream 
as usual. 

At the same time our hybrid-memory aware decoder is able 
to decode streams that were not encoded with frame R/W 
meta-information payloads. Moreover it does a hybrid-
memory aware DPB mapping using the frame type as a 
heuristic. As expected, we observed that I and P frames have 
higher R/W ratios, but it was interesting to see that I frames 
don’t always have a higher R/W ratio than P frames. Therefore 
we map I and P frames to the most write constrained memory 
spaces on a first come, first served basis. 
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C. Decoder: Exploiting Meta-information 
At the decoder we extract the R/W ratio from the 

compressed stream and use it to give hints to the runtime 
environment about the desired memory mapping of decoded 
frames. The runtime environment is a virtualization layer on 
top of the physical memory hierarchy composed of two main 
modules: a frame allocation manager, which does the frame 
allocation to a unified virtualized memory space, and a 
memory mapping manager, which does the actual mapping of 
the virtual memory in the psychical memory space. 

Hiding the details of the memory organization such as 
memory types and sizes to the application level has the 
advantage of exposing a unified address space to the 
application. This means that even if the frames sizes are of the 
order of MBs and the hardware platform has distributed on 
chip memories with different granularities, 256 KB SRAM 
and 512 MRAM per core in hybrid mixed configuration, the 
application does not have to be tuned to this specific 
configuration. This allows a seamless migration of the same 
application on a hardware platform with different memory 
configuration with no additional effort from application’s 
developer perspective. 

The frame allocation manager tries to maximize the usage 
of on-chip memories and minimize accesses to off-chip 
memories. It does this by opportunistically mapping the 
frames with a higher R/W ratio to the higher levels of memory 
hierarchy. The mapping is dynamic in nature since the frames 
are mapped at runtime based on R/W ratios across frames in 
same GOP. Once a frame is assigned to a specific memory 
space it is not reassigned later on. We are able to do this since 
we have a holistic view on the R/W distribution across frames 
in the entire GOP and we avoid unnecessary migrations 
between different memory spaces based on newly decoded 
frames R/W ratio. 

The memory mapping manager takes care of the mapping 
and translation between the virtual address space and the 
physical address space. It does this by presenting the upper 
levels with an Intermediate Physical Addresses (IPA) which 
points in the virtual address space. Whenever a frame data 
needs to be accessed the application gives the IPA and the 
offset inside the frame, and then is the memory mapping 
manager’s job to retrieve that data from the physical memory. 

Using a virtualization layer for embedded on chip memories 
to isolate the application from varying hardware 
configurations is not a new idea. For instance, HaVOC [11] 
does this by using user-assisted and compiler-driven policies 
enforced by an embedded hardware memory manager 
implementation. However, our approach is implemented 
purely in software and does not require any changes in the 
upper levels of the software stack. 

In Figure 7 we give an example of frame mapping in the 
hybrid memory hierarchy to better understand how the runtime 
system works. Here we show how the decoded frames are 
assigned to different memories in the virtual space based on 
the R/W ratio and how the physical memory mapping is done. 
The ‘free’ on-chip space is reserved for code and application’s 
stack. 

To apply our technique into a live streaming scenario, the 
video needs to be delayed with the time necessary to encode 
and transmit a GOP. This is because in order to make an 
informed memory mapping decision our technique needs the 
R/W ratio distribution over the entire GOP. This is only a one 
time delay, for the first GOP in the sequence. Usually in live 
streaming the frequency of I frames is higher to be able to 
recover more gracefully from frame drops due to network 
errors, thus the GOP is shorter. For example with a typical 
GOP of 15 frames and an encoding and transmission frame 
rate of 25 fps the initial delay would only be 600ms. 

Figure 7: Frames Allocation Example 
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D. Overheads 
Our scheme will incur some overheads; however, these 

overheads are negligible as demonstrated next. During 
encoding the overheads are minimal since we don’t use a 
profiler that processes the stream in a separate pass, rather we 
enhanced the encoder to count accesses to each frame and 
embed this information in the stream. The stream size 
overheads are minimal, only four bytes per frame, as shown in 
section V.B. Overall the compressed stream size increases 
with less than 0.01% on average, thus we don’t put additional 
pressure on the network. Of course the runtime system will 
incur more overheads due to the decision making and 
differential data mapping, but as we show in section VI.C, 
these overheads don’t cause frame loss and overall our 
enhanced decoder is able to decode frames even earlier before 
the deadline. 

VI. EXPERIMENTAL EVALUATION 

A. Experimental Goals 
The main goal of the experiments was to show that our 

proposed scheme is able to gain significant energy savings. 
For this purpose we measured total energy consumption (static 
and dynamic) of the entire memory hierarchy (off-chip and 
on-chip). To show that our technique is applicable in practice 
and doesn’t cause video quality loss due to missed deadlines 
because of higher latency of accesses to NVMs, we also 
measured the effect on overall memory latency.  

We present our results as savings of the three hybrid 
memory configurations compared to the uniform memory 
configuration. In each of the graphs on the vertical axis we 
plot the percentage of savings and on the horizontal axis we 
plot the results for each of the video sequences and the 
average case. The three cases are: 1) uniform versus hybrid-
on-chip, 2) uniform versus hybrid-off-chip, and 3) uniform 
versus hybrid-mixed. 

B. Experimental Setup 
Our software configuration uses the H.264/AVC reference 

implementation JM 18.3 [30] as the encoder and the open 
source FFmpeg H.264 [31] as the decoder. We chose to use 
the reference implementation of H.264 on the encoding side in 
the detriment of its highly optimized open source counterpart, 
FFmpeg, since it does not affect the way the stream is encoded 
and the results of applying our technique on the decoder side. 
We enhanced the encoder to keep track of decoded frames 
access frequencies and to embed this meta-information in the 
stream. For the decoder we used the MB level parallel 
programming model described in section IV.C, and enhanced 
it to extract the frame R/W ratio meta-information and pass it 
to the runtime system. 

The benchmark videos used to test our technique were 
taken from Xiph.org Test Media collection [32] and are listed 
in Table 2. We experimented with sequences at 720p and 
1080p resolutions. Each sequence is 500 frames long and use 
YUV420 color space. We choose YUV420 since it is the most 

commonly used color space. The sequences have been 
encoded using settings based on the High 5 profile.  

 

Table 2: Test Sequences 
Resolution Name ID 

72
0p

 

mobcal S1 
parkrun S2 
shields S3 

stockholm S4 
ducks_take_off S5 

in_to_tree S6 
old_town_cross S7 

park_joy S8 

10
80

p 

crowd_run S1 
ducks_take_off S2 

in_to_tree S3 
old_town_cross S4 

park_joy S5 
rush_hour S6 
sunflower S7 

tractor S8 
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72
0p

 

1 

Uniform 2   1024   

8 HybridOnChip 1 4 1024   
HybridOffChip 2   512 512 
HybridMixed 1 4 512 512 

2 

Uniform 4   1024   

16 HybridOnChip 2 8 1024   
HybridOffChip 4   512 512 
HybridMixed 2 8 512 512 

3 

Uniform 6   1024   

24 HybridOnChip 3 12 1024   
HybridOffChip 6   512 512 
HybridMixed 3 12 512 512 

10
80

p 

1 

Uniform 6   1024   

24 HybridOnChip 3 12 1024   
HybridOffChip 6   512 512 
HybridMixed 3 12 512 512 

2 

Uniform 8   1024   

32 HybridOnChip 4 16 1024   
HybridOffChip 8   512 512 
HybridMixed 4 16 512 512 

3 

Uniform 12   1024   

48 HybridOnChip 6 24 1024   
HybridOffChip 12   512 512 
HybridMixed 6 24 512 512 
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  Our hardware simulator emulates the multicore platform 
described in section V.A. From here on we will generically 
refer to SXU units as cores, while the PPE is named power 
processor. Each core has 256KB SRAM in the uniform 
memory configuration and 128KB SRAM/ 512KB MRAM in 
the hybrid memory configuration. The off-chip memory is 
either 1024MB DRAM or 512MB DRAM and 512MB 
PCRAM. For extensive experimental results we varied the 
number of cores from 8 to 48 as shown in Table 3. Since we 
consider the same memory space per core in all 
configurations, increasing the number of cores also increases 
the available on-chip memory space. For 720p videos we run 
tests for 8, 16 and 24 cores configurations. We chose the lower 
limit as being 8 cores to match 720p’s decoder minimum 
computation requirements for achieving a 25fps rate. Going 
beyond 24 cores for 720p would give us better results but 
mainly due to increase on-chip memory space and not so much 
due to our tuned memory mapping. Due to increase memory 
requirements for 1080p video we test this in 24, 32 and 48 
cores configurations. For each scenario we consider 4 
configurations: Uniform, Hybrid On-Chip, Hybrid Off-Chip 
and Hybrid Mixed memory hierarchies. 

Of the total available on-chip memory space we use only 
75% for data since the considered parallel model needs space 
for execution stack and code mapping. In case of hybrid on-
chip memory we map the code to on-chip NVM since it is 
written only once per application and executed many times. 

C. Effects on Slack Time  
To determine how performance is affected we measured the 

memory subsystem latency. The results in this case, presented 
in Figure 8, are interpreted as slack time deviations, i.e., the 
difference between the frame deadline and the frame decoding 
time over all configurations. The results show hybrid memory 
configurations slack time with respect to the uniform memory 
configuration slack time. Our results show than in the optimal 
configuration for energy savings we also obtain slack time 
improvements of 36.2% for 720p, 24 cores, hybrid mixed 
memory, and of 35% for 1080p, 48 cores, hybrid mixed 
memory. In the case of hybrid on-chip configuration the slack 
time improvement is even higher, above 40% in some cases. 
The difference is due to the impact of high write time that the 
off-chip NVM has. This effect can be clearly observed in 
hybrid-off chip configuration where the slack time 
improvement is as low as negative 5% on average, which 
translates in potentially missing 5% of the frames deadlines 
and slightly degrading the perceived video quality. We say 
potentially since this value is with respect to the uniform 
memory hierarchy slack time, and it is reached only when in 
case of uniform memory the frame decoding time matches 
exactly the frame deadline. A higher slack time translates into 
increased decoding performance; the frames are decoded 
earlier than their deadlines. This could be exploited by a DVS 
scheme which would slow down the cores to the limit of 
meeting the deadlines, thus saving more computation energy.  

Figure 8: Slack Time (higher is better) 
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D.   Energy Savings 
When looking at energy savings (Figure 9), it is important 

to note that varying the number of cores, which implicitly 
increases the available on-chip memory space considerably, 
does not affect the results significantly. Even in the lowest 
configurations we obtain average savings of 31.3 % for 720p, 
8 cores, hybrid mixed memory, and of 32.9% for 1080p, 24 
cores, hybrid mixed memory. In the highest configurations we 
obtain savings of 36.7% for 720p, 24 cores, hybrid mixed 
memory, and of 38.9% for 1080p, 48 cores, hybrid mixed 
memory. 

Looking at the three different hybrid memory 
configurations across all graphs it is clear that hybrid mixed 
gives the highest memory energy savings. This is because in 
this configuration our technique is able to exploit dynamic 
energy savings for both on-chip and off-chip and because 
NVMs have lower leakage power. In the hybrid off-chip 
configuration the savings are lower but still considerable. In 
this case our technique can only exploit the lower static energy 
and does its best to overcome the impact of higher dynamic 
energy of PCRAM. For hybrid on-chip configuration we 
observe even lower savings due to the limited optimization 
opportunities offered by the small on-chip space. However it is 
interesting to observe that increasing the on-chip memory 
space leaves less optimization opportunities for hybrid off-
chip configuration since many of the high R/W ratio will fit 
on-chip and for example in 1080p, 48 cores scenario the 
hybrid-on chip does almost as good as hybrid off-chip, 18% 
versus 20.8% on average. 

Overall, combining hybrid-on chip with hybrid-off chip 
configurations seems to be the winning scenario when 
targeting energy savings. The energy results are 
complemented by the increased slack time which can be 
exploited by other optimizations targeting performance. An 
important part of our savings comes from increasing the on-
chip memory space by taking advantage of higher density of 
NVMs while keeping the same area. By tuning the memory 
mapping using reference frames access R/W higher level 
information ratio we are able to overcome the unbalanced 
R/W costs of NVMs. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper we presented AVid, an annotation driven video 

decoding scheme for hybrid memory subsystems. We show 
how to exploit video decoder access patterns by embedding 
this meta-information as annotations in the video stream to 
exploit the physical characteristics of nonvolatile memories 
for energy savings and performance improvements. Our 
experimental results show that our technique is able to achieve 
execution time and energy reduction by up to 40.8% and 
39.7% respectively when applied to H.264 decoding. To the 
best of our knowledge there is no other work proposing hybrid 
memory hierarchies for optimizing video decoding 
applications by exploiting reference frames access frequency 
meta-information. 

Due to increased slack period our technique can be 
complemented by voltage scaling schemes to save even more 
power. Combining our technique with existing DVS schemes 
might give interesting results.  

Figure 9: Energy Savings (higher is better) 
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In the future we would like to extend the current technique 
to sub-frame granularity, i.e., quantify accesses to portions of 
the frames during Motion Compensation and map frame 
sections differentially. 
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