
AVid: Annotation Driven Video Decoding for Hybrid
Memories

Liviu Codrut Stancu, Luis Angel D. Bathen, Nikil Dutt, Alex Nicolau
School of Information and Computer Science, University of California, Irvine

{lstancu,lbathen,dutt,nicolau}@ics.uci.edu

Abstract—Adopting emerging non-volatile memory (NVM)
technologies is a viable solution to minimize the increasing
memory leakage power in today’s embedded systems. However,
in order to take advantage of the many benefits in NVMs,
software must account for their high write overheads. This paper
presents AVid, an annotation driven video decoding technique for
hybrid memory subsystems. AVid exploits the physical
characteristics of NVMs by extracting video decoder access
patterns and uses this meta-information to minimize write
overheads, thereby improving energy savings and performance.
Our experimental results on an annotation-aware H.264 codec
show that our technique is able to achieve execution time and
energy reduction by up to 40.8% and 39.7% respectively when
applied to H.264 decoding.

Keywords: Hybrid Memories; Energy Efficiency; H.264; Video
Decoding; Software Annotations

I. INTRODUCTION
The ever-increasing demands for media-rich applications

(e.g., video streaming), coupled with the need to manage
power and energy have motivated the move towards multi-
core platforms. While mobile platforms and their desktop
counter parts both need to deal with the evolving software
stack and new computing substrates, they have very different
energy budgets; for mobile platforms there is a critical need
for the embedded software stack to account for its tight energy
budget. In today’s platforms, the power consumption of the
whole system is primarily dominated by the memory hierarchy
[1]. Moreover, ITRS predicts that over the next decade
memory static/leakage power will continue to surpass dynamic
power consumption [2][3].

SRAM-based memories are a major source of leakage
power in the system [4] as they may consume up to 90% of the
total on-chip area [2] and up to 70% of total power consumed
by the system [5], which is aggravated by the move towards
multi- and many-core platforms. To reduce the static power of
the memory subsystem, researchers have proposed the use of
Non Volatile Memories (NVMs) as an alternative to SRAM
on-chip memories and DRAM off-chip memories [6][7][8].
NVMs (e.g. PCRAMs, MRAMs) have high densities, low
leakage power and comparable read latencies and read
dynamic power with respect to traditional memories. One
major problem with NVMs is the expensive write operation,
which incurs high write latency and high write dynamic
power. To mitigate the drawbacks of non-volatile memories
researchers have proposed hybrid memory hierarchies that
consist of a combination of SRAM, DRAM, and NVM

technologies. There have been several research efforts focused
on deploying hybrid memory hierarchies for caches [6][8][9],
on-chip memories [10][11] and main memories [12] [13].

In order to better exploit hybrid memory hierarchies the
runtime system needs higher-level information (e.g., compiler,
application) to tune the application’s memory allocation-
decisions based on their characteristics. The runtime system
could also collect statistically information at runtime to react
to the application’s memory usage patterns. This however
takes time and may not necessarily predict future access
patterns, thereby motivating the need for both offline high
level information and online characterization.

Software annotations have been extensively used to guide
run-time systems to make smart resource management
decisions to increase system performance or minimize power
consumption [14][15][16][17]. However, to the best of our
knowledge, no previous efforts have focused on software
annotations to exploit the features of hybrid memory
organizations.

This work proposes AVid, an annotation driven video
decoding scheme for hybrid memory subsystems. AVid
focuses on extracting meta-information from highly
predictable, data intensive applications (e.g., video decoding)
and exploits this information to make efficient run-time
memory allocation decisions that leverage the physical
characteristics of nonvolatile memories for energy savings and
performance improvements. Our experimental results on an
annotation-aware H.264 codec show that our technique is able
to achieve execution time and energy reduction by up to
40.8% and 39.7% respectively when applied to H.264
decoding.

The novel contributions of our work are that we:
• Leverage software annotations to opportunistically exploit

the physical characteristics of the memory hierarchy.
• Perform run-time characterization of video streams for

efficient data placement on hybrid memories
• Propose a hybrid-memory-aware video codec.

II. RELATED WORK

A. Emerging Memory Technologies
In the quest for reducing leakage power of traditional

memory technologies (SRAM, DRAM), hybrid memory
hierarchies have been proposed. Joo et al. [7] studied the use
of PCM as an alternative to SRAM for on-chip caches. Sun et
al. [6] proposed an SRAM-MRAM hybrid L2 cache in a
NUCA-based 3D stacked multi-core platform. Mishra et al. [8]

2978-1-4673-4967-3/12/$31.00 ©2012 IEEE

introduced STT-RAM as an alternative to MRAM memory
and proposed solutions at the on-chip network level to
prioritize memory accesses and hide the overheads in write
latencies. Wu et al. [9] studied hybrid cache architectures at a
finer granularity and proposes a solution with various types of
NVMs across cache levels and across the same level of the
cache. Hu et al. [10] proposed a dynamic data allocation
algorithm to exploit a hybrid on-chip scratch pad memory
consisting of PCM and SRAM. Zhou et al. [13] proposed the
use of PCM as the main memory for a 3D stacked chip.
Dhiman et al. [12] proposed a low overhead hybrid hardware
software solution for managing a PCRAM and DRAM main
memory hierarchy. Wongchaowart et al. [18] used a placement
algorithm that exploits content based signatures to mitigate
write overheads in main memory. Mogul et al. [19] described
Operating System support based on annotated semantic
information for adopting hybrid memory as a solution for
hybrid memory. Ferreira et al. [20] proposed an architecture
that allows drop-in replacement of a conventional DRAM
main memory with PCM. Liu et al. [21] exploited variable
data partitioning based on statically extracted application
characteristic in the context of hybrid main memory enabled
DSP systems. Lee et al. [22] proposed a hybrid aware memory
management and data migration using static analysis of
application’s behavior. Bathen et al. [11] proposed a run-time
memory management technique that allows a transparent
sharing of distributed on-chip hybrid memories by using a
hybrid aware, compiler generated and/or user assisted,
application's address space partitioning.

AVid is different from previous hybrid memory subsystem
approaches in that we are able to make an informed memory
mapping decision with virtually no overheads. Using an
application’s input data oriented approach we exploit the
predictable decoder access patterns by collecting metadata on
the fly during encoding. Although AVid targets distributed
scratchpad and non-volatile memories, our scheme may be
extended to hybrid cache based systems [6][8][9].

B. Energy Efficient Decoding
Several related efforts have proposed techniques for energy-

efficient multimedia decoding. Choi et al. [23] presented a
DVS technique for MPEG decoding to reduce energy
consumption while maintaining the quality of service by
predicting the computational workload using a frame-based
history. Based on the predicted workload the voltage and
frequency are scaled to stretch the decoding time to the limit
of the frame deadlines. Using a similar approach to DVS
Cornea et al. [14] proposed a technique that performs an off-
line profiling and annotation of the stream to reduce the
overhead of estimating the frame decoding times at runtime.
Furthermore, in [24] the annotated meta-information is used
for backlight adjustment of LCD displays during multimedia
playback for improved battery life. In another approach on
DVS for multimedia decoding Chung et al. [15] proposed the
profiling of streams and extraction of meta-data characterizing
execution time variations at the server side through static
analysis. Huang et al. [17] proposed an offline bit stream
analysis and metadata insertion, done while the multimedia

file is downloaded to a mobile device, to capture the expected
computational demand during decoding. More recently,
Gheorghita et al. [25] and Hamers et al. [16] proposed a
scenario-based voltage and frequency scaling approach for
low energy multimedia decoding. The scenarios capture
platform-independent multimedia decoding complexity and
resource requirements and are annotated to the stream.

As opposed to previous approaches to energy efficient
multimedia decoding AVid doesn’t require static analysis of
the application’s execution or profile classes of inputs to infer
run-time behavior. The metadata lives in the stream and is
specific to each input. However, our work can be
complemented by existing DVS schemes that predict decoding
time and energy consumption [14][15][16][23] to gain further
energy savings.

In summary, we take a different approach on profiling
multimedia streams and exploit the aggregated meta-
information in an energy efficient memory allocation
technique that leverages the unique characteristics of hybrid
memory hierarchies. This work explores optimization
opportunities for video decoding but can be easily extended to
the higher class of data compression applications.

III. MOTIVATION

Figure 1: ITRS Power Consumption Trend [26]

Figure 1 shows ITRS’ consumer portable power consumption
trends for the next decade [26]. As we can observe, the trend
for static power (dotter green bar) will overshadow dynamic
power consumption (pink diagonal squares). As a result,
designers are eager to adopt emerging non-volatile memories
to mitigate the growing leakage power issues in today’s
memory subsystems. Although non-volatile memories are
viable candidates for replacing SRAM and DRAM-based
memories due to their low leakage power, the adoption of non-
volatile memories is challenging due to fact that their write
operation overheads in terms of energy and latency are orders
of magnitude higher than their read operations. To illustrate
this, Table 1 summarizes the essential parameters of two most
common types of NVMs (MRAM and PCRAM), in
comparison with SRAM; from this table it is clear that NVMs
cannot be used as a drop-in replacement for classic memory
technologies and that a different approach is needed. An
immediate idea is hybrid-memory which tries to get the best
from both worlds by complementing NVMs with

3

SRAMs/DRAMs. The goals of hybrid-memory hierarchy are
to obtain reduced leakage, increased capacity, comparable
read latency, while minimizing write overheads. To achieve
these goals using hybrid-memories, it is critical that a software
stack understands and exploits the special characteristics of
these hybrid memories.

Table 1: Parameters of memory technologies [9]

Using an application oriented approach we identified video

codecs as a good candidate for this purpose. This class of
applications is omnipresent in current computer systems,
ranging from server machines to mobile platforms. One issue
in current battery constrained devices is that video codecs are
memory, and implicitly power, hungry. For instance, the
Decoded Picture Buffer (DPB), which is an integral data
structure in Motion Estimation on the encoder side and Motion
Compensation on the decoder side, can take up to 12MBs of
memory for 720p video with 9 stored frames. Although the
DPB is memory intensive, notice that its access patterns are
highly predictable from the decoder’s perspective since they
can be accurately extracted at the encoding time and
embedded in the stream with negligible overhead.

Figure 2: Frames R/W Distribution over 720p Sequences

By profiling and analyzing the encoder’s access patterns we
determined that frames stored in the DPB have an average
Read-to-Write (R/W) ratio of about 3.5, which means that they
are written once and read more than three times, and a
maximum R/W of about 15. A more detailed distribution of
R/W accesses over the frames of several video sequences is
presented in Figure 2. We plotted the results over seven 720p
sequences (S1-S7 in the horizontal axis), we aggregated the
frames in bins based on their R/W ratio (e.g., 1:3 represents
the frames that have a R/W ratio between 1 and 3) and show

the percentage of frames in each bin (vertical axis). The high
number of read accesses compared to write accesses makes the
case for mapping this data structure to NVMs to overcome the
disadvantages of unbalanced R/W costs. Although we will
focus on frame level access frequency, our scheme can be
easily extended to other levels of data granularity (e.g., Slice
and MB level).

With the increasing number of multi-core on-chip platforms
researchers have proposed different approaches to exploit
video decoding data parallelism. The most promising approach
seems to be macro-block level parallelization, a highly
scalable scheme. Even with the state of the art
implementations of parallel H.264 decoding, a major
limitation is main memory bandwidth requirements [27]. Due
to their higher densities, NVMs are a good candidate for
enhancing the on-chip memory space while maintaining the
same area, and thus decreasing accesses to main memory.

Besides increasing the on-chip memory space with minimal
area overhead, NVMs, both on-chip and off-chip, have very
low leakage power, thus reducing total memory consumption,
which is an important aspect in mobile platforms.

IV. VIDEO CODEC BACKGROUND
Multimedia applications are a special case of streaming

applications, which process a continuous incoming stream of
data. Unlike general-purpose applications, multimedia
workloads tend to have a more regular execution being
executed in a pipelined fashion, with each stage of the pipeline
being a well-defined algorithm. This exposes unique
opportunities for observing and extracting execution patterns
that can be used for content oriented power and performance
optimizations.

For our study we choose video processing since it is the
most resource demanding class of multimedia applications.
Out of the many video standards H.264/AVC stands out as
being widely adopted due to its compression capabilities;
however, our scheme can be easily extended to other
standards.

A. H.264
The H.264/Advanced Video Coding (AVC) codec achieves

dramatic compression ratios necessary for the storage and
transmission of large format, high quality video.

H.264 stream has a hierarchical structure. A stream is
composed of Groups of Pictures (GOP): each GOP contains
three types of frames (I, P, B), each frame can be divided in
slices, each slice is further divided into macro-blocks of 16x16
pixels, and each macro-block can be subdivided in partitions.

In earlier standards only I and P frames were used for
reference. Each P frame was predicted from the preceding I or
P frames and each B frame was predicted from the I and/or P
frames on either side of it. An example of ‘classic’ GOP
structure is presented in Figure 3. The H.264 standard
introduced new prediction structures. One example is the
hierarchical GOP structure which enables prediction from B
frames. Moreover, it is possible to use multiple reference
frames for prediction, which means that the encoder can
search up to N reference frames to find the best match for each

0%	

20%	

40%	

60%	

80%	

100%	

S1	
 S2	
 S3	
 S4	
 S5	
 S6	
 S7	

1:3	
 3:5	
 5:7	
 7:9	
 9:11	
 11:13	
 13:15	

Memory
Size

Norm.
Density

Latency
(cycles)

Dyn.
Energy

(nJ)

Static
Power

(W)
SRAM
(1MB)

1 8 0.388 1.36

MRAM
(4MB)

4

Read: 20 Read: 0.4 0.15
Write 60 Write: 2.3

PCRAM
(16MB)

16

Read: 40 Read: 0.8 0.3
Write: 200 Write: 1.5

4

macro-block. This offers potential for improved compression
efficiency by trading-off increased computational expense at
the encoder and increased storage at encoder and decoder,
since the DPB must now store N reference frames [28].

I B B P B B P B B P

Figure 3: Frames in a H.264 stream

The H.264 decoder pipeline consists of four multimedia
kernels: Entropy Decoder (ED), Inverse Discrete Cosine
Transform (IDCT), Quantization (Q), Motion Compensation
(MC) and the Deblocking Filter. A high level diagram of the
decoder is given in Figure 4. A macro-block is decoded, re-
scaled and inverse transformed to form a decoded residual
macro-block. The decoder generates the same prediction that
was created at the encoder and adds this to the residual to
produce a decoded macro-block.

Entropy	

Encoder

Inverse	
 transform	

and	

Quantize

Current	

decoded	
 frame

Previously	

decoded	
 frames

Decoded	

Residual	
 MB

Prediction	

MB

Decoded	

MB

Prediction

+

Coded	
 bitstream

intra

inter

DPBDPB

Figure 4: H.264 decoder [28]

B. Prediction
The widespread adoption of H.264 is mainly because of its

improved compression performance. Compared to previous
video codecs it has a reduction of 50% in bandwidth
requirements for a given image quality [27]. The new standard
seeks to minimize redundancy in the compressed stream
through extensive analysis. Much of the performance gain is
due to the efficient prediction methods used. At the encoder
for each macro-block a prediction is created based on an

extensive search of previously decoded data either from the
current frame using intra prediction or from other frames that
have already been coded using inter prediction. The prediction
is then extracted from the macro-block to form a residual. At
the decoder the reverse operation is executed, the residual is
combined with the prediction block to form the original
macro-block value.

The predicted macro-block is identified by: 1) a motion
vector, which gives the position inside a specific frame, and 2)
a reference frame index, which gives the corresponding
reference frame. Each macro-block can have one or two
predictions. Each reference frame is stored in the DPB and its
lifetime is dependent on the macro-blocks in other frames
referencing it and the display rate.

The rate at which a frame is referenced during motion-
compensated prediction depends on the video dynamic visual
characteristics and frame types. Generally, an I frame has a
longer lifetime and higher reference rate than a P or B frame.
In more dynamic videos the GOPs are shorter, thus I frames
have shorter lifetimes.

C. Parallel H.264 decoder
A lot of effort has been invested in parallelizing the H.264

decoder. Analyzing the structure of the H.264 stream, it’s
possible to identify several levels at which data parallelism
can be exploited: GOP level, frame level, slice level and
macro-block level.

The first level of parallelism is exposed by the fact that
GOPs are processed independently in decoder’s pipeline.
However, GOP level parallelism has tremendous memory
requirements for HD resolution and can lead to high latencies.

Frame level parallelism can be implemented by exploiting
the dependencies between P and B frames, but it is not
scalable beyond two or three concurrently processed frames
and has high memory requirements.

Slice level seems to be a better idea since a slice is a group
of independently encoded macro-blocks within a frame.
Encoding many slices per frame is beneficial when streaming
over a lossy network due to increased error correction
performance. However, by increasing the number of slices per
frame the compression efficiency is affected. That is why
H.264 videos are usually encoded with only one slice per
frame. Due to this reason even if slice level parallelism seems
to be a good approach, it is not feasible in practice.

Macro-block level exposes a finer grain data parallelism
opportunity emerging from the fact that inter-coded blocks in
the same frame are independent. Macro block level parallelism
has an increased performance and scalability potential. Baker
et al. [27] demonstrate how this can be implemented on an
IBM Cell Broadband Engine (CBE) [29] chip multiprocessor
by taking advantage of the platform characteristics. Their
design uses both functional and data partitioning by mapping
MBs from inter-coded frames onto the lightweight SPU cores
and dedicating one additional SPU to deblocking filter. The
general purpose PPU core manages entropy decoding, which
is inherently not parallelizable, and intra decoding data
dependencies.

5

V. EXPLOITING VIDEO STREAM ANNOTATIONS
This section will cover how we exploit video stream

annotations to efficiently manage the hybrid memory
subsystem. Figure 5 shows a high level view of our system.
Here we show how the meta-information is extracted during
encoding with virtually no cost and is embedded in the stream
payload in the form of annotations. Section V.B discusses the
stream profiler, which is a part of the encoder and can be run
online in case of streaming media or offline in case of stored
media. Section V.C discusses the annotated streams, which are
transmitted to the decoder where the reverse operation is
executed. The annotations are extracted from the stream
during stream decoding and handed to the runtime system,
which dynamically maps the data structures to the preferred
memory type. Section V.D discusses the overheads incurred
by our technique.

Figure 5: Hybrid Memory Aware Codec High Level View

A. Target Platform and Assumptions
Figure 6 depicts a high level view of our decoder target

platform. We choose a chip multiprocessor design similar with
IBM Cell Broadband Engine [29] which was proven to have
the potential to speedup complex data intensive applications
such as H.264 video decoding given an effective
parallelization scheme [27]. It consists of a Power Processing
Element (PPE), a general purpose control/OS processor,
connected to a number of Synergistic Execution Units (SXU),
which have extensive support for Single Instruction Multiple
Data (SIMD) operations, via an AMBA AHB bus-based
communication fabric. Each SXU has a local store consisting
of a scratch pad memory (SPM) and a non-volatile memory
(NVM). The data flow is controlled by a Direct Memory
Access (DMA) unit. The main memory consists of DRAM and
NVM. We chose to explore configurations that seem realistic
in terms of memory sizes in future mobile platforms.

We make the following assumptions:
1. Programmers have access to the source code of the target

video codec in order to enhance it.
2. The platform exposes memory types (SRAM, MRAM,

etc.) and capacities to the runtime system.
3. The technique operates over blocks of data (e.g. 1KB

mini-pages) such that sections of decoded frames can be
mapped to various on-chip physical memories.

4. All instructions/data are mapped to the on-chip/off-chip
memories and there are no caches.

	
 	
 	
 SPM/NVM	
 Enhanced	
 CMP

SXU SXU SXU SXU

SPM SPM SPM SPM

NVM NVM NVM NVM

DMA

DRAM

NVM

PPE

Figure 6: Target Platform

B. Encoder: Aggregating Meta-information
The decoded frame’s meta-information is collected at the

encoding time with minimal overhead and embedded in the
frame control data slots. The meta-information consists of
R/W ratio for each frame in the DPB.

Reference frames access frequencies are extracted through
profiling during the encoder’s ME operation. Each motion
vector is characterized by a source frame (a previously
decoded frame or the current decoding frame when the vector
references a previously decoded section of it), a destination
frame (the current decoding frame) and a partition of variable
size. Keeping track of the generated motion vectors during
encoding we count the number of bytes read from each
decoded frame and write to each decoding frame. Thus, our
metric consists of a simple R/W ratio for each frame.

The encoder embeds the annotations in the stream using
Supplemental Enhancement Information (SEI) NAL units. As
defined by the standard, SEI messages contain information
that may assist decoding or displaying video but are not
essential for constructing decoded video frames. Each
annotation is transmitted in a separate SEI Raw Byte Sequence
Payload (RBSP) and each SEI message is sent as a separate
NAL Unit. To embed the metadata we use User Data
Unregistered field, which contains user data defined by a
Unique User ID, the contents of which are not defined by the
standard. Each annotation contains a float number, 4 bytes,
and we send one SEI message per frame, so the overhead is
negligible.

By choosing this approach our codec does not affect the
standard and does not conflict with other codecs. Thus, a
stream with annotated metadata can be processed by a non-
hybrid-memory aware decoder, which would simply ignore
the User Data Unregistered field and would decode the stream
as usual.

At the same time our hybrid-memory aware decoder is able
to decode streams that were not encoded with frame R/W
meta-information payloads. Moreover it does a hybrid-
memory aware DPB mapping using the frame type as a
heuristic. As expected, we observed that I and P frames have
higher R/W ratios, but it was interesting to see that I frames
don’t always have a higher R/W ratio than P frames. Therefore
we map I and P frames to the most write constrained memory
spaces on a first come, first served basis.

Annotated	

Stream

Memory	
 Placement	
 Manager

MRAM

R/W	
 Ratio	

Allocation	

Decision

SRAM

PCRAM

DRAM

Encoder

Stream	

Profiling

Decoder

Annotations	

Extraction

OnlineOnlineOffline/OnlineOffline/Online

6

C. Decoder: Exploiting Meta-information
At the decoder we extract the R/W ratio from the

compressed stream and use it to give hints to the runtime
environment about the desired memory mapping of decoded
frames. The runtime environment is a virtualization layer on
top of the physical memory hierarchy composed of two main
modules: a frame allocation manager, which does the frame
allocation to a unified virtualized memory space, and a
memory mapping manager, which does the actual mapping of
the virtual memory in the psychical memory space.

Hiding the details of the memory organization such as
memory types and sizes to the application level has the
advantage of exposing a unified address space to the
application. This means that even if the frames sizes are of the
order of MBs and the hardware platform has distributed on
chip memories with different granularities, 256 KB SRAM
and 512 MRAM per core in hybrid mixed configuration, the
application does not have to be tuned to this specific
configuration. This allows a seamless migration of the same
application on a hardware platform with different memory
configuration with no additional effort from application’s
developer perspective.

The frame allocation manager tries to maximize the usage
of on-chip memories and minimize accesses to off-chip
memories. It does this by opportunistically mapping the
frames with a higher R/W ratio to the higher levels of memory
hierarchy. The mapping is dynamic in nature since the frames
are mapped at runtime based on R/W ratios across frames in
same GOP. Once a frame is assigned to a specific memory
space it is not reassigned later on. We are able to do this since
we have a holistic view on the R/W distribution across frames
in the entire GOP and we avoid unnecessary migrations
between different memory spaces based on newly decoded
frames R/W ratio.

The memory mapping manager takes care of the mapping
and translation between the virtual address space and the
physical address space. It does this by presenting the upper
levels with an Intermediate Physical Addresses (IPA) which
points in the virtual address space. Whenever a frame data
needs to be accessed the application gives the IPA and the
offset inside the frame, and then is the memory mapping
manager’s job to retrieve that data from the physical memory.

Using a virtualization layer for embedded on chip memories
to isolate the application from varying hardware
configurations is not a new idea. For instance, HaVOC [11]
does this by using user-assisted and compiler-driven policies
enforced by an embedded hardware memory manager
implementation. However, our approach is implemented
purely in software and does not require any changes in the
upper levels of the software stack.

In Figure 7 we give an example of frame mapping in the
hybrid memory hierarchy to better understand how the runtime
system works. Here we show how the decoded frames are
assigned to different memories in the virtual space based on
the R/W ratio and how the physical memory mapping is done.
The ‘free’ on-chip space is reserved for code and application’s
stack.

To apply our technique into a live streaming scenario, the
video needs to be delayed with the time necessary to encode
and transmit a GOP. This is because in order to make an
informed memory mapping decision our technique needs the
R/W ratio distribution over the entire GOP. This is only a one
time delay, for the first GOP in the sequence. Usually in live
streaming the frequency of I frames is higher to be able to
recover more gracefully from frame drops due to network
errors, thus the GOP is shorter. For example with a typical
GOP of 15 frames and an encoding and transmission frame
rate of 25 fps the initial delay would only be 600ms.

Figure 7: Frames Allocation Example

Fr
am

e	

Al
lo
ca
tio

n	

M
an

ag
er

M
em

or
y	

M
ap

pi
ng
	
 M

an
ag
er

ID#	
 1	
 	
 R/W	
 3.5
ID#	
 2	
 	
 R/W	
 4.8
ID#	
 3	
 	
 R/W	
 2.2
ID#	
 4	
 	
 R/W	
 1.0
ID#	
 5	
 	
 R/W	
 1.0
ID#	
 6	
 	
 R/W	
 5.0
ID#	
 7	
 	
 R/W	
 2.3
ID#	
 8	
 	
 R/W	
 1.0
ID#	
 9	
 	
 R/W	
 1.0
ID#	
 10	
 	
 R/W	
 4.1
ID#	
 11	
 	
 R/W	
 1.7
ID#	
 12	
 	
 R/W	
 1.0
ID#	
 13	
 	
 R/W	
 2.1
ID#	
 14	
 	
 R/W	
 1.0
ID#	
 15	
 	
 R/W	
 3.6

Annotated	
 GOP

vSRAM vMRAM vPCRAM vDRAM FREE

ID#	
 1	
 	
 R/W	
 3.5
ID#	
 2	
 	
 R/W	
 4.8
ID#	
 3	
 	
 R/W	
 2.2
ID#	
 4	
 	
 R/W	
 1.0
ID#	
 5	
 	
 R/W	
 1.0
ID#	
 6	
 	
 R/W	
 5.0
ID#	
 7	
 	
 R/W	
 2.3
ID#	
 8	
 	
 R/W	
 1.0
ID#	
 9	
 	
 R/W	
 1.0
ID#	
 10	
 	
 R/W	
 4.1
ID#	
 11	
 	
 R/W	
 1.7
ID#	
 12	
 	
 R/W	
 1.0
ID#	
 13	
 	
 R/W	
 2.1
ID#	
 14	
 	
 R/W	
 1.0
ID#	
 15	
 	
 R/W	
 3.6

Virtual	
 Memory	

Mapped	
 GOP

Ph
ys
ic
al
	
 M

em
or
y	

M
ap

pe
d	

G
O
P

OFF	
 CHIP

ID#	
 3 ID#	
 4
ID#	
 5
ID#	
 8
ID#	
 9
ID#	
 11
ID#	
 14
ID#	
 12

ID#	
 13
ID#	
 7

ON	
 CHIP

ID#1

ID#2

ID#6

ID#10

ID#15

SR
AM

M
RA

M

PC
RA

M

DR
AM

7

D. Overheads
Our scheme will incur some overheads; however, these

overheads are negligible as demonstrated next. During
encoding the overheads are minimal since we don’t use a
profiler that processes the stream in a separate pass, rather we
enhanced the encoder to count accesses to each frame and
embed this information in the stream. The stream size
overheads are minimal, only four bytes per frame, as shown in
section V.B. Overall the compressed stream size increases
with less than 0.01% on average, thus we don’t put additional
pressure on the network. Of course the runtime system will
incur more overheads due to the decision making and
differential data mapping, but as we show in section VI.C,
these overheads don’t cause frame loss and overall our
enhanced decoder is able to decode frames even earlier before
the deadline.

VI. EXPERIMENTAL EVALUATION

A. Experimental Goals
The main goal of the experiments was to show that our

proposed scheme is able to gain significant energy savings.
For this purpose we measured total energy consumption (static
and dynamic) of the entire memory hierarchy (off-chip and
on-chip). To show that our technique is applicable in practice
and doesn’t cause video quality loss due to missed deadlines
because of higher latency of accesses to NVMs, we also
measured the effect on overall memory latency.

We present our results as savings of the three hybrid
memory configurations compared to the uniform memory
configuration. In each of the graphs on the vertical axis we
plot the percentage of savings and on the horizontal axis we
plot the results for each of the video sequences and the
average case. The three cases are: 1) uniform versus hybrid-
on-chip, 2) uniform versus hybrid-off-chip, and 3) uniform
versus hybrid-mixed.

B. Experimental Setup
Our software configuration uses the H.264/AVC reference

implementation JM 18.3 [30] as the encoder and the open
source FFmpeg H.264 [31] as the decoder. We chose to use
the reference implementation of H.264 on the encoding side in
the detriment of its highly optimized open source counterpart,
FFmpeg, since it does not affect the way the stream is encoded
and the results of applying our technique on the decoder side.
We enhanced the encoder to keep track of decoded frames
access frequencies and to embed this meta-information in the
stream. For the decoder we used the MB level parallel
programming model described in section IV.C, and enhanced
it to extract the frame R/W ratio meta-information and pass it
to the runtime system.

The benchmark videos used to test our technique were
taken from Xiph.org Test Media collection [32] and are listed
in Table 2. We experimented with sequences at 720p and
1080p resolutions. Each sequence is 500 frames long and use
YUV420 color space. We choose YUV420 since it is the most

commonly used color space. The sequences have been
encoded using settings based on the High 5 profile.

Table 2: Test Sequences
Resolution Name ID

72
0p

mobcal S1
parkrun S2
shields S3

stockholm S4
ducks_take_off S5

in_to_tree S6
old_town_cross S7

park_joy S8

10
80

p

crowd_run S1
ducks_take_off S2

in_to_tree S3
old_town_cross S4

park_joy S5
rush_hour S6
sunflower S7

tractor S8

Table 3: Simulator Configurations
R

es
ol

ut
io

n

Sc
en

ar
io

N
am

e

Size (MB)

C
or

es

SR
A

M

M
R

A
M

D
R

A
M

PC
R

A
M

72
0p

1

Uniform 2 1024

8 HybridOnChip 1 4 1024
HybridOffChip 2 512 512
HybridMixed 1 4 512 512

2

Uniform 4 1024

16 HybridOnChip 2 8 1024
HybridOffChip 4 512 512
HybridMixed 2 8 512 512

3

Uniform 6 1024

24 HybridOnChip 3 12 1024
HybridOffChip 6 512 512
HybridMixed 3 12 512 512

10
80

p

1

Uniform 6 1024

24 HybridOnChip 3 12 1024
HybridOffChip 6 512 512
HybridMixed 3 12 512 512

2

Uniform 8 1024

32 HybridOnChip 4 16 1024
HybridOffChip 8 512 512
HybridMixed 4 16 512 512

3

Uniform 12 1024

48 HybridOnChip 6 24 1024
HybridOffChip 12 512 512
HybridMixed 6 24 512 512

8

 Our hardware simulator emulates the multicore platform
described in section V.A. From here on we will generically
refer to SXU units as cores, while the PPE is named power
processor. Each core has 256KB SRAM in the uniform
memory configuration and 128KB SRAM/ 512KB MRAM in
the hybrid memory configuration. The off-chip memory is
either 1024MB DRAM or 512MB DRAM and 512MB
PCRAM. For extensive experimental results we varied the
number of cores from 8 to 48 as shown in Table 3. Since we
consider the same memory space per core in all
configurations, increasing the number of cores also increases
the available on-chip memory space. For 720p videos we run
tests for 8, 16 and 24 cores configurations. We chose the lower
limit as being 8 cores to match 720p’s decoder minimum
computation requirements for achieving a 25fps rate. Going
beyond 24 cores for 720p would give us better results but
mainly due to increase on-chip memory space and not so much
due to our tuned memory mapping. Due to increase memory
requirements for 1080p video we test this in 24, 32 and 48
cores configurations. For each scenario we consider 4
configurations: Uniform, Hybrid On-Chip, Hybrid Off-Chip
and Hybrid Mixed memory hierarchies.

Of the total available on-chip memory space we use only
75% for data since the considered parallel model needs space
for execution stack and code mapping. In case of hybrid on-
chip memory we map the code to on-chip NVM since it is
written only once per application and executed many times.

C. Effects on Slack Time
To determine how performance is affected we measured the

memory subsystem latency. The results in this case, presented
in Figure 8, are interpreted as slack time deviations, i.e., the
difference between the frame deadline and the frame decoding
time over all configurations. The results show hybrid memory
configurations slack time with respect to the uniform memory
configuration slack time. Our results show than in the optimal
configuration for energy savings we also obtain slack time
improvements of 36.2% for 720p, 24 cores, hybrid mixed
memory, and of 35% for 1080p, 48 cores, hybrid mixed
memory. In the case of hybrid on-chip configuration the slack
time improvement is even higher, above 40% in some cases.
The difference is due to the impact of high write time that the
off-chip NVM has. This effect can be clearly observed in
hybrid-off chip configuration where the slack time
improvement is as low as negative 5% on average, which
translates in potentially missing 5% of the frames deadlines
and slightly degrading the perceived video quality. We say
potentially since this value is with respect to the uniform
memory hierarchy slack time, and it is reached only when in
case of uniform memory the frame decoding time matches
exactly the frame deadline. A higher slack time translates into
increased decoding performance; the frames are decoded
earlier than their deadlines. This could be exploited by a DVS
scheme which would slow down the cores to the limit of
meeting the deadlines, thus saving more computation energy.

Figure 8: Slack Time (higher is better)

Uniform	
 vs.	
 HybridMixed

-­‐10	

0	

10	

20	

30	

40	

S1
	

S2
	

S3
	

S4
	

S5
	

S6
	

S7
	

S8
	

AV
G
	

%	
 Scenario	
 1	

-­‐10	

0	

10	

20	

30	

40	

S1
	

S2
	

S3
	

S4
	

S5
	

S6
	

S7
	

S8
	

AV
G
	

%	
 Scenario	
 2	

-­‐10	

0	

10	

20	

30	

40	

S1
	

S2
	

S3
	

S4
	

S5
	

S6
	

S7
	

S8
	

AV
G
	

%	
 Scenario	
 3	

-­‐10	

0	

10	

20	

30	

40	

S1
	

S2
	

S3
	

S4
	

S5
	

S6
	

S7
	

S8
	

AV
G
	

%	

Scenario	
 1	

-­‐10	

0	

10	

20	

30	

40	

S1
	

S2
	

S3
	

S4
	

S5
	

S6
	

S7
	

S8
	

AV
G
	

%	

Scenario	
 2	

-­‐10	

0	

10	

20	

30	

40	

S1
	

S2
	

S3
	

S4
	

S5
	

S6
	

S7
	

S8
	

AV
G
	

%	

Scenario	
 3	

72
0p

10

80
p

 Uniform	
 vs.	
 HybridOffChip Uniform	
 vs.	
 HybridOnChip

9

D. Energy Savings
When looking at energy savings (Figure 9), it is important

to note that varying the number of cores, which implicitly
increases the available on-chip memory space considerably,
does not affect the results significantly. Even in the lowest
configurations we obtain average savings of 31.3 % for 720p,
8 cores, hybrid mixed memory, and of 32.9% for 1080p, 24
cores, hybrid mixed memory. In the highest configurations we
obtain savings of 36.7% for 720p, 24 cores, hybrid mixed
memory, and of 38.9% for 1080p, 48 cores, hybrid mixed
memory.

Looking at the three different hybrid memory
configurations across all graphs it is clear that hybrid mixed
gives the highest memory energy savings. This is because in
this configuration our technique is able to exploit dynamic
energy savings for both on-chip and off-chip and because
NVMs have lower leakage power. In the hybrid off-chip
configuration the savings are lower but still considerable. In
this case our technique can only exploit the lower static energy
and does its best to overcome the impact of higher dynamic
energy of PCRAM. For hybrid on-chip configuration we
observe even lower savings due to the limited optimization
opportunities offered by the small on-chip space. However it is
interesting to observe that increasing the on-chip memory
space leaves less optimization opportunities for hybrid off-
chip configuration since many of the high R/W ratio will fit
on-chip and for example in 1080p, 48 cores scenario the
hybrid-on chip does almost as good as hybrid off-chip, 18%
versus 20.8% on average.

Overall, combining hybrid-on chip with hybrid-off chip
configurations seems to be the winning scenario when
targeting energy savings. The energy results are
complemented by the increased slack time which can be
exploited by other optimizations targeting performance. An
important part of our savings comes from increasing the on-
chip memory space by taking advantage of higher density of
NVMs while keeping the same area. By tuning the memory
mapping using reference frames access R/W higher level
information ratio we are able to overcome the unbalanced
R/W costs of NVMs.

VII. CONCLUSIONS AND FUTURE WORK
In this paper we presented AVid, an annotation driven video

decoding scheme for hybrid memory subsystems. We show
how to exploit video decoder access patterns by embedding
this meta-information as annotations in the video stream to
exploit the physical characteristics of nonvolatile memories
for energy savings and performance improvements. Our
experimental results show that our technique is able to achieve
execution time and energy reduction by up to 40.8% and
39.7% respectively when applied to H.264 decoding. To the
best of our knowledge there is no other work proposing hybrid
memory hierarchies for optimizing video decoding
applications by exploiting reference frames access frequency
meta-information.

Due to increased slack period our technique can be
complemented by voltage scaling schemes to save even more
power. Combining our technique with existing DVS schemes
might give interesting results.

Figure 9: Energy Savings (higher is better)

0	

10	

20	

30	

40	

S1
	

S2
	

S3
	

S4
	

S5
	

S6
	

S7
	

S8
	

AV
G
	

%	
 Scenario	
 1	

0	

10	

20	

30	

40	

S1
	

S2
	

S3
	

S4
	

S5
	

S6
	

S7
	

S8
	

AV
G
	

%	
 Scenario	
 2	

0	

10	

20	

30	

40	

S1
	

S2
	

S3
	

S4
	

S5
	

S6
	

S7
	

S8
	

AV
G
	

%	
 	
 Scenario	
 3	

72

0p

10
80

p

Uniform	
 vs.	
 HybridMixed Uniform	
 vs.	
 HybridOffChip Uniform	
 vs.	
 HybridOnChip

0	

10	

20	

30	

40	

S1
	

S2
	

S3
	

S4
	

S5
	

S6
	

S7
	

S8
	

AV
G
	

%	
 Scenario	
 1	

0	

10	

20	

30	

40	

S1
	

S2
	

S3
	

S4
	

S5
	

S6
	

S7
	

S8
	

AV
G
	

%	
 Scenario	
 2	

0	

10	

20	

30	

40	

S1
	

S2
	

S3
	

S4
	

S5
	

S6
	

S7
	

S8
	

AV
G
	

%	
 Scenario	
 3	

10

In the future we would like to extend the current technique
to sub-frame granularity, i.e., quantify accesses to portions of
the frames during Motion Compensation and map frame
sections differentially.

VIII. ACKNOWLEDGEMENTS
This work was partially supported by NSF Variability

Expedition Grant Number CCF-1029783.

REFERENCES
[1] L. A. Barroso and U. Holzle, “The Case for Energy-Proportional

Computing,” Computer, vol. 40, no. 12, pp. 33-37, 2007.
[2] “ITRS. System drivers.,” 2003. [Online]. Available:

http://www.itrs.net/.
[3] N. S. Kim et al., “Leakage current: Moore’s law meets static

power,” Computer, vol. 36, no. 12, pp. 68-75, 2003.
[4] N. Azizi, F. N. Najm, and A. Moshovos, “Low-leakage asymmetric-

cell SRAM,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 11, no. 4, pp. 701-715, 2003.

[5] “ITRS. System drivers,” 2005. [Online]. Available:
http://www.itrs.net/.

[6] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture
of the 3D stacked MRAM L2 cache for CMPs,” in High
Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on, 2009, pp. 239-249.

[7] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie, “Energy-
and endurance-aware design of phase change memory caches,” in
Proceedings of the Conference on Design, Automation and Test in
Europe, 2010, pp. 136-141.

[8] A. K. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C. R.
Das, “Architecting on-chip interconnects for stacked 3D STT-RAM
caches in CMPs,” in Proceedings of the 38th annual international
symposium on Computer architecture, 2011, pp. 69-80.

[9] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie,
“Hybrid cache architecture with disparate memory technologies,” in
Proceedings of the 36th annual international symposium on
Computer architecture, 2009, pp. 34-45.

[10] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha,
“Towards energy efficient hybrid on-chip Scratch Pad Memory with
non-volatile memory,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2011, 2011, pp. 1-6.

[11] L. A. Bathen and N. Dutt, “HaVOC: a hybrid memory-aware
virtualization layer for on-chip distributed ScratchPad and non-
volatile memories,” in Proceedings of the 49th Annual Design
Automation Conference, 2012, pp. 447-452.

[12] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM
and DRAM main memory system,” in Design Automation
Conference, 2009. DAC ’09. 46th ACM/IEEE, 2009, pp. 664-669.

[13] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,” in
Proceedings of the 36th annual international symposium on
Computer architecture, 2009, pp. 14-23.

[14] R. Cornea, A. Nicolau, and N. Dutt, “Video Stream Annotations for
Energy Trade-offs in Multimedia Applications,” in Proceedings of
the Proceedings of The Fifth International Symposium on Parallel
and Distributed Computing, 2006, pp. 17-23.

[15] E.-Y. Chung, G. De Micheli, and L. Benini, “Contents provider-
assisted dynamic voltage scaling for low energy multimedia
applications,” in Proceedings of the 2002 international symposium
on Low power electronics and design, 2002, pp. 42-47.

[16] J. Hamers and L. Eeckhout, “Scenario-Based Resource Prediction
for QoS-Aware Media Processing,” Computer, vol. 43, no. 10, pp.
56-63, 2010.

[17] Y. Huang, S. Chakraborty, and Y. Wang, “Using offline bitstream
analysis for power-aware video decoding in portable devices,” in
Proceedings of the 13th annual ACM international conference on
Multimedia, 2005, pp. 299-302.

[18] B. Wongchaowart, M. K. Iskander, and S. Cho, “A content-aware
block placement algorithm for reducing PRAM storage bit writes,”

in Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, 2010, pp. 1-11.

[19] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi, “Operating
system support for NVM+DRAM hybrid main memory,” in
Proceedings of the 12th conference on Hot topics in operating
systems, 2009, p. 14.

[20] A. P. Ferreira, B. Childers, R. Melhem, D. Mosse, and M. Yousif,
“Using PCM in Next-generation Embedded Space Applications,” in
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2010 16th IEEE, 2010, pp. 153-162.

[21] T. Liu, Y. Zhao, C. J. Xue, and M. Li, “Power-aware variable
partitioning for DSPs with hybrid PRAM and DRAM main
memory,” in Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE, 2011, pp. 405-410.

[22] K. Lee and A. Orailoglu, “Application specific non-volatile primary
memory for embedded systems,” in Proceedings of the 6th
IEEE/ACM/IFIP international conference on Hardware/Software
codesign and system synthesis, 2008, pp. 31-36.

[23] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram, “Frame-based
dynamic voltage and frequency scaling for a MPEG decoder,” in
Proceedings of the 2002 IEEE/ACM international conference on
Computer-aided design, 2002, pp. 732-737.

[24] R. Cornea, A. Nicolau, and N. Dutt, “Software annotations for
power optimization on mobile devices,” in Proceedings of the
conference on Design, automation and test in Europe: Proceedings,
2006, pp. 684-689.

[25] S. V. Gheorghita, T. Basten, and H. Corporaal, “Application
Scenarios in Streaming-Oriented Embedded-System Design,”
Design Test of Computers, IEEE, vol. 25, no. 6, pp. 581-589, 2008.

[26] “ITRS. 2008 update overview.,” 2008. [Online]. Available:
http://www.itrs.net/.

[27] M. A. Baker, P. Dalale, K. S. Chatha, and S. B. K. Vrudhula, “A
scalable parallel H.264 decoder on the cell broadband engine
architecture,” in Proceedings of the 7th IEEE/ACM international
conference on Hardware/software codesign and system synthesis,
2009, pp. 353-362.

[28] I. E. Richardson, The H.264 Advanced Video Compression
Standard, 2nd ed. Wiley Publishing, 2010.

[29] D. C. Pham et al., “Overview of the architecture, circuit design, and
physical implementation of a first-generation cell processor,” Solid-
State Circuits, IEEE Journal of, vol. 41, no. 1, pp. 179-196, 2006.

[30] K. Sühring, “JM 18.3.” [Online]. Available:
http://iphome.hhi.de/suehring/tml/.

[31] F. Bellard, “FFmpeg.” [Online]. Available: http://www.ffmpeg.org/.
[32] “Xiph.org Test Media.” [Online]. Available:

http://media.xiph.org/video/derf/.

11

