
Comparing Rapid Type Analysis with Points-To
Analysis in GraalVM Native Image

David Kozak
ikozak@fit.vut.cz

Brno University of Technology

Czechia

Vojin Jovanovic
vojin.jovanovic@oracle.com

Oracle Labs

Switzerland

Codrut Stancu
codrut.stancu@oracle.com

Oracle Labs

Switzerland

Tomáš Vojnar
vojnar@fit.vut.cz

Brno University of Technology

Czechia

Christian Wimmer
christian.wimmer@oracle.com

Oracle Labs

USA

Abstract

Whole-program analysis is an essential technique that en-

ables advanced compiler optimizations. An important exam-

ple of such a method is points-to analysis used by ahead-of-

time (AOT) compilers to discover program elements (classes,

methods, �elds) used on at least one program path. GraalVM

Native Image uses a points-to analysis to optimize Java ap-

plications, which is a time-consuming step of the build. We

explore how much the analysis time can be improved by

replacing the points-to analysis with a rapid type analysis

(RTA), which computes reachable elements faster by allow-

ing more imprecision. We propose several extensions of pre-

vious approaches to RTA: making it parallel, incremental,

and supporting heap snapshotting. We present an extensive

experimental evaluation of the e�ects of using RTA instead

of points-to analysis, in which RTA allowed us to reduce the

analysis time for Spring Petclinic—a popular demo applica-

tion of the Spring framework—by 64 % and the overall build

time by 35% at the cost of increasing the image size due to

the imprecision by 15 %.

CCS Concepts: • Software and its engineering→ Incre-

mental compilers; Automated static analysis.

Keywords: compiler, ahead-of-time compilation, static anal-

ysis, optimization, Java, GraalVM

ACM Reference Format:

David Kozak, Vojin Jovanovic, Codrut Stancu, Tomáš Vojnar, and Chris-

tianWimmer. 2023. Comparing Rapid Type Analysis with Points-To

Analysis in GraalVM Native Image. In Proceedings of the 20th ACM

SIGPLAN International Conference on Managed Programming Lan-

guages and Runtimes (MPLR ’23), October 22, 2023, Cascais, Portugal.

MPLR ’23, October 22, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0380-5/23/10.

h�ps://doi.org/10.1145/3617651.3622980

ACM,NewYork, NY, USA, 14 pages. h�ps://doi.org/10.1145/3617651.

3622980

1 Introduction

Whole-program analysis is an essential technique enabling

advanced compiler optimizations. An important example of

such a technique is points-to analysis (PTA) [9, 19–21] used

to discover program elements (classes, methods, �elds) that

are used in at least one run of the program and hence need

to be compiled. We call such elements reachable.

GraalVM Native Image [27] combines PTA, application

initialization at build time, heap snapshotting, and ahead-of-

time (AOT) compilation to optimize Java applications. This

combination of features reduces the application startup time

and memory footprint. Without using PTA, everything on

the Java class path would have to be compiled. That would

lead to long build times and unnecessary large binaries [27].

The results of the PTA are thus essential, but the overhead

of computing points-to sets for each variable is signi�cant.

It can take minutes to analyze big applications.

Long build times are inconvenient for developers because

they are used to compiling their applications often, and any

delay can signi�cantly hurt their productivity. To give a

concrete example from our later presented experiments, we

can mention a larger web application (the Spring Petclinic)

where the analysis takes 159 seconds. We explore how much

time can be saved by using a rapid type analysis (RTA) [6, 23]

instead of PTA. Intuitively, the basic idea of RTA is to discover

which types, i.e., classes from a given class hierarchy, can be

used in methods so-far known to be reachable from given

root methods, which can in turn enlarge the set of reachable

methods by considering that any so-far instantiated type can

appear in a variable of a certain super-type, leading to an

iterative �xed point computation.

We show how the above idea can be applied in the context

of GraalVM Native Image where one has to deal with issues

such as heap snapshotting. We build on similar principles as

B. Tizer in [25]. On top of that, we also develop a parallel and

incremental version of the analysis. The incrementality is

achieved by using method summaries that sum up the e�ect

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

129

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8846-922X
https://orcid.org/0009-0002-4233-2401
https://orcid.org/0009-0007-3646-3663
https://orcid.org/0000-0002-2746-8792
https://orcid.org/0009-0003-3213-9306
https://doi.org/10.1145/3617651.3622980
https://doi.org/10.1145/3617651.3622980
https://doi.org/10.1145/3617651.3622980
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617651.3622980&domain=pdf&date_stamp=2023-10-19


MPLR ’23, October 22, 2023, Cascais, Portugal Kozak, Jovanovic, Stancu, Vojnar, and Wimmer.

of each analyzed method. These summaries can be serialized

and reused between multiple builds.

RTA can provide results quicker at the cost of reduced pre-

cision. The lower precision can yield bigger binaries, which

is not so problematic during the development phase. On the

other hand, the need to compile more classes and methods

goes against the savings due to the cheaper analysis. We

try to answer the research question whether such a loss of

precision is justi�ed. We perform an extensive experimental

comparison of our version of RTA and the PTA currently

implemented in GraalVM Native Image to see whether RTA

can provide some advantage over the PTA, and if so, how

much.

For our experiments, we use the standard Java benchmark

suites Renaissance [16] and Dacapo [7] along with example

applications for the Java microservice frameworks Spring

[26], Micronaut [13], and Quarkus [18]. The experimental

evaluation shows, for example, that RTA can reduce the

analysis time of Spring Petclinic—a popular demo application

of the Spring framework—by 64 % and the overall build time

by 35% at the cost of increasing the image size by 15%. On

average, RTA reduced the analysis time by 40% and the

overall build time by 15 % at the cost of increasing the image

size by 15 %1.

We also experiment with the scalability of both RTA and

PTA with respect to the number of available processor cores.

The results show that, for a reduced number of threads, such

as 1 or 4, the savings in analysis time can be even greater,

making RTA a good choice for constrained environments

such as GitHub Actions [1] or similar CI pipelines.

Our implementation, which is based on the Native Image

component of GraalVM [14], is written in Java and Java is

used for all examples in this paper. However, our approach is

not limited to Java or languages that compile to Java bytecode.

It can be applied to all managed languages that are amenable

to points-to analysis, such as C# or other languages of the

.NET framework.

In summary, this paper contributes the following:

• We introduce a new variant of rapid type analysis for

the context of GraalVM Native Image. It supports class

initialization at build time and heap snapshotting.

• We extend the proposed algorithm to be parallel and

incremental. The incrementality is achieved by using

method summaries that sum up the e�ect of each ana-

lyzed method. These summaries can be serialized and

reused between multiple builds.

• We provide a detailed comparison of the new variant

of RTA with a points-to analysis for ahead-of-time

compilation of Java. We discuss the e�ects on analysis

time, build time, reachable elements, and binary size.

1Note that the averages were computed using all our benchmarks including

those presented in the appendix only.

We also evaluate the scalability of both analysis meth-

ods. The results show that for bigger applications the

analysis time can be reduced by up to 64 %.

2 Overview of GraalVM Native Image

GraalVM Native Image [27] produces standalone binaries

for Java applications that contain the application along with

all dependencies and necessary runtime components such

as the garbage collector and threading support. It relies on a

closed-world assumption, i.e., all code is available to analyze

at image build time. Dynamic features such as re�ection and

dynamic class loading are supported by explicitly registering

the program elements that would otherwise be opaque to

the analysis. The image build process consists of several

successive phases and subphases.

First, the points-to analysis is started to detect reachable

program elements. It starts with a set of root methods, which

includes the application entry point speci�ed by the user

as well as the entry points of runtime components. The

execution of the analysis is interconnected with application

initialization and heap snapshotting.

Application initialization at build time allows developers

to initialize parts of their application when the image is be-

ing built instead of performing the initialization at every

application startup. During the initialization, static �elds of

initialized classes are assigned to either manually written

or default values. Heap snapshotting traverses all the objects

reachable from static �elds of the initialized classes and con-

structs an object graph, i.e., a directed graph of instances

whose edges are references to other objects reachable via in-

stance �elds or array slots. The object graph constitutes the

image heap and is stored as a part of the binary �le. When

the application is started, the image heap is mapped directly

into memory [27]. This process and its interaction with static

analysis are discussed in more details in Section 3.5.

After the analysis �nishes, the ahead-of-time compila-

tion is started. We use the Graal Compiler for compilation.

Methods are represented using the Graal Intermediate Rep-

resentation (IR), which is graph-based and models both the

control-�ow and the data-�ow dependencies between nodes

[22]. At this point, the IR graphs are optimized using the

facts proven by the analysis. Finally, the image heap and

compiled code are written into the image �le.

2.1 Points-to Analysis in GraalVM Native Image

This section presents the points-to analysis used in GraalVM

Native Image, which was introduced in [27]. The analysis

is context-insensitive, path-sensitive, �ow-insensitive for

�elds but �ow-sensitive for local variables. It starts with a

set of root methods and iteratively processes all transitively

reachable methods until a �xed-point is reached.

During the analysis, objects are represented by their types

only, not by their allocation sites as is common in other

130



Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image MPLR ’23, October 22, 2023, Cascais, Portugal

pointer analyses [20]. Using the type abstraction is a su�-

ciently powerful approximation which yields good results in

practice when the goal is to compute reachable program ele-

ments, while keeping the analysis time reasonably low. This

type information is enough to enable compiler optimizations

such as virtual method de-virtualization.

Each reachable method is parsed from bytecode into the

Graal IR, which is then transformed into a type-�ow graph.

Nodes of type-�ow graphs include those representing in-

structions as well as nodes representing formal parameters

and return values of methods. The nodes are connected via

directed use edges.

Each node maintains a type-state information about all

types that can reach it. Allocation nodes, i.e., nodes repre-

senting allocation instructions, act as sources that produce

types, which are then propagated along the use edges (with

the input/output of nodes representing method invocations

handled in a di�erent way as discussed below). Once a type

is added to a type-state, it is never removed. Thus, the size

of all type states can only grow. In any compilation run, the

number of program elements (classes, methods, and �elds) is

given and �nite. As the number of reachable elements only

grows during the analysis and there is a �xed upper-bound,

termination is guaranteed. The worst-case scenario happens

when all program elements are reachable by the analysis.

Type-�ow graphs of methods are connected into a sin-

gle interprocedural graph covering the whole application.

For that, nodes producing arguments of method calls are

connected with formal-parameters nodes of the target meth-

ods, and return nodes from the target methods are connected

back into the invocation nodes in the callers. The input edges

of invocation nodes are thus not used for regular type propa-

gation but rather for steering the interconnection of sources

of arguments with the formal-parameter nodes (and of the

appropriate return node with the invocation node).

For static methods, this linkage happens when the type-

�ow of the caller is created. For virtual methods, the linkage

happens dynamically during the analysis. Every time a new

type is added into the type-state of a receiver of a method

call, it is used to resolve, i.e., to identify, the concrete method

to be linked.

To better understand our PTA, let us now walk through an

example. For brevity, we omit calls to constructors and excep-

tion handling. Consider the program in Figure 1. The analysis

starts with the entry point Hello.main(). The method is

parsed, and the type-�ow graph in Figure 2 created. It con-

tains the following nodes:

• An invocation node in1 for the call of foo().

• An allocation node an1 for Hello, connected to 8=1 as

a source of receiver types of the call of foo().

• An allocation node an2 for A, connected to in1 as a

source of argument types in the call of foo().

• An invocation node in2 for the call of log().

public class Hello {

public static void main() {

new Hello().foo(new A());

log();

}

static void log() { new B(); }

void foo(I i) { i.bar(); }

}

interface I { void bar(); }

class A implements I {...}

class B implements I {...}

Figure 1. Running example for analysis.

Since an1 is used by in1 as a source of its receiver types

and since the invocation is virtual, as soon as the type Hello

appears in an1, the resolution of virtual methods is used,

and Hello.foo() is found as the method to be invoked. The

body of Hello.foo() is parsed and transformed into the

corresponding type-�ow graph with the following nodes:

• A formal-parameter node fn
1
used as a source of types

of the implicit this parameter.

• A formal-parameter node fn
2
used as a source of types

of the formal parameter i.

• An invocation node in3 for the call of bar() that uses

fn
2
as a source of its receiver types.

Now, an1 and an2 get connected to fn1 and fn2, resp., allowing

a �ow of types from Hello.main() into Hello.foo(). The

type A can hence �ow from an2 to fn
2
and be used as a

receiver type of in3 that is constructed for the call I.bar(),

upon which the resolution selects A.bar() as the call target.

The call to Hello.log() is static, and so its target can be

determined directly. Its type �ow-graph contains an alloca-

tion node an3 of B. Note that while the type B is instantiated,

its method B.bar() is not considered reachable as an3 has

no use edge, and so it can never �ow out of the method and

get into the invocation node of I.bar() in Hello.foo().

The results of the points-to analysis are useful not only

to identify reachable elements but also for many compiler

optimizations. For example, they can be used to remove

unnecessary casts, remove dead branches of instanceof

checks that are always true or false, exclude �elds that are

never accessed, and to optimize virtual calls with a limited

number of receiver types. Knowing the set of receivers and

their types allows one to devirtualize method calls with only

one receiver type, employ polymorphic inline caching [10]

when there are a few receiver types only, and perform more

method inlining, which can lead to subsequent optimizations.

3 RTA with Method Summaries

This section presents our implementation of RTA [6, 23]. It

supports heap snapshotting, is designed to be parallel, and

131



MPLR ’23, October 22, 2023, Cascais, Portugal Kozak, Jovanovic, Stancu, Vojnar, and Wimmer.

Figure 2. Running example type-�ow graph.

supports method summaries to make it incremental. First,

we describe the basic idea of the core of the analysis using

a system of high-level constraints, which neglects somemore

technical aspects of the actual analysis to be easier to under-

stand. Then, we describe a single-threaded, non-incremental

version of the proposed analysis, which, however, already

contains some preparation for its subsequent parallelization.

Afterwards, we propose how to run parts of the analysis in

parallel, and, �nally, we discuss incremental analysis.

The basic e�ect of the analysis—assuming all method

calls to be virtual (i.e., not distinguishing di�erent types

of invocations)—can be summarized using the following con-

straints inspired by the work of Tip et al. in [24].

Let ) be the set of all types, " the set of all methods,

and � the set of all expressions in the analyzed application.

We use (C0C82)~?4 (4) to denote the static type of 4 ∈ �.

Furthermore, (D1C~?4B (C) denotes the set of all subtypes of

C ∈ ) , and (C0C82!>>:D? (C,<) denotes the actual call target

for a virtually invoked < ∈ " on C ∈ ) . For < ∈ " , let

�0;;�G?A (<) denote the set of all call expressions 4.5 () for

4 ∈ � and 5 ∈ " that appear in the method <, and let

�=BC�G?A (<) denote the set of all instantiation expressions

new� () for � ∈ ) that appear in <. The sets ' ⊆ " and

� ⊆ ) representing reachable methods and instantiated types

determined using RTA satisfy the following constraints:

1. main ∈ '.

2. ∀< ∈ ' ∀4.5 () ∈ �0;;�G?A (<)

∀C ∈ (D1C~?4B ((C0C82)~?4 (4)) .

C ∈ � ∧ (C0C82!>>:D? (C, 5 ) =<′ =⇒ <′ ∈ '.

3. ∀< ∈ ' ∀=4F � () ∈ �=BC�G?A (<). � ∈ � .

Intuitively, main is always reachable. The second rule

makes sure that all methods that can be virtually called from

a call expression in a reachable method are also reachable.

Finally, the third rule makes sure that any type that can be

instantiated in a reachable method is considered instantiated.

The above constraints showed how RTA handles virtual

method invocations. However, there are actually �ve di�er-

ent types of invokes in Java: invokestatic, invokevirtual,

invokeinterface, invokespecial, and invokedynamic.

As de�ned in the JVM speci�cation [12], invokevirtual

and invokeinterface represent virtual method invocations,

and we do not need to distinguish them for our purposes.

Invokestatic represents static method invocation, i.e., a di-

rect invocation of a method called on a Java class, not on an

instance. Invokespecial represents a direct invocation of

an instance method in cases where it is clear which method

should be called. This instruction is used, for example, when

calling constructors, when calling amethod on the superclass

of the current class, or when calling a method on an expres-

sion of a type that has no subtypes. Both invokestatic and

invokespecial are direct invokes, i.e. they have a unique

call target that can be statically determined. Therefore, they

could be resolved in the same way immediately upon the

discovery of the invoke instruction in the bytecode of any

reachable method. However, as shown in Section 3.3, di�er-

entiating between them can actually increase the precision

in some cases. Invokedynamic represents a special invoke

whose call target is not yet �xed but computed on the �rst ex-

ecution of the bytecode. As our analysis is based on the Graal

IR, it does not have to handle invokedynamic explicitly be-

cause these invokes are processed by the Graal compiler

before the analysis starts and are optimized either into direct

invokes or into lookup procedures determining the correct

call target at runtime.

3.1 Core Algorithm and Data Structures

We now re�ne the above presented basic idea of RTA such

that (1) it takes into account di�erent kinds of calls that can

appear (static calls, virtual calls, special calls), (2) computes

information needed for subsequent compilation phases (in

order not to have to repeat the analysis for this purpose),

and (3) is ready for subsequent parallelization.

During the analysis, the e�ect of each method is repre-

sented using a method summary that consists of sets that

contain the following information: static invoked methods,

virtually invoked methods, special invoked methods, instan-

tiated types, read �elds, written �elds, and embedded con-

stants. The summary format is designed to be minimal while

still containing all the necessary information for both RTA

and the later AOT compilation step. For example, distinguish-

ing between read and written �elds is not needed for RTA

itself, but AOT compilation requires the information since it

132



Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image MPLR ’23, October 22, 2023, Cascais, Portugal

automatically removes never accessed �elds [27]. The infor-

mation about which �elds are read is also needed to drive

the heap snapshotting (cf. Section 3.5).

The internal state of the analysis can be viewed as con-

sisting of a worklist containing all methods that still need to

be analyzed and the following pieces of information associ-

ated with the representation kept by the compiler for types,

methods, and �elds:

• For each type t, the analysis stores the following:

– An atomic boolean �ag set to true if the analysis

discovers that C may be instantiated at run time.

– A set of methods declared in t that the analysis has

so-far found to be virtually invoked.

– A set of methods declared in t that the analysis has

so-far found to be special invoked.

– A set of subtypes of t discovered as instantiated.

• For each method m, the analysis stores the following:

– An atomic boolean �ag marking< as invoked, indi-

cating that the method body is considered reachable

at runtime.

– An atomic boolean �ag marking< as special invoked,

indicating that the method may be a target of an

invoke special call.

– An atomic boolean �ag marking< as virtually in-

voked, which indicates that the method may be the

target of a virtual method call. Note that this does

not necessarily mean that < is invoked since the

invoked method can come from some subtype of the

declaring type of<.

• For each �eld f, the analysis stores the following:

– An atomic boolean �ag marking 5 as read.

– An atomic boolean �ag marking 5 as written.

The pseudocode of the core of the analysis can be found

in Algorithm 1. It starts with a set of root methods used to

initialize the worklist (line 1). The main loop (lines 2–7) then

processes methods in the worklist until it becomes empty.

For each method in the worklist, it is �rst parsed into the

Graal IR, the intermediate representation discussed previ-

ously (line 4). The summary of the method being processed

is initialized to consist of empty sets. The extractSummary

method (line 5) then iterates over the instructions of the

method, and whenever it �nds an instruction of the types

listed in the left column of Table 1, it adds it to the collection

of the summary given in the right column.

When the summary is ready, it is passed into the app-

plySummary method (lines 9–20). This method iterates over

all collections within the summary and calls appropriate

register methods.

Many of the register methods are relatively straight-

forward. For example, see the method registerAsInvoked

(lines 22–26), which adds an invoked method to the work-

list. Note that the mark method (line 23) is called before

adding the method being processed into the worklist. The

Table 1. Correspondence between bytecode instructions and

collections in method summaries.

Bytecode instruction Collection in the summary

new Instantiated types

anewarray Instantiated types

multianewarray Instantiated types

get�eld Read �elds

put�eld Written types

invoke* Directly/Virtually called methods

mark method accepts a boolean �ag as a parameter. If the

�ag is true, mark returns false (intuitively, no marking was

needed). If the �ag is false, mark atomically changes it to

true and returns true (intuitively, the marking was needed).

Hence, mark returns true only on its �rst invocation and

false otherwise. This implementation with the atomic up-

date is used to facilitate the parallel analysis presented later

on. Registering �elds as read or written follows the same

pattern, and is omitted from the algorithm for space reasons.

3.2 Invoke Virtual Handling

The handling of virtual invokes and instantiated types is

more interesting (see Algorithm 2). The two methods pre-

sented in the algorithm are interconnected.

The registerAsVirtualInvokedmethod (lines 1–11) han-

dles a virtual method call. Since the analysis has no points-to

information, it uses the declaring class of the invokedmethod

to traverse all its currently instantiated subtypes. The infor-

mation about instantiated subtypes is collected inside the

registerAsInstantiatedmethod (line 16). For each instan-

tiated subtype, the virtual method is resolved into a concrete

method using type.resolveMethod (line 7), which resolves

a virtual call or interface call for the given concrete caller

type according to the Java VM speci�cation [12].

The registerAsInstantiated method (lines 13–26) is

used when a type is instantiated. First, the newly instanti-

ated type is added to the instantiatedSubytpes set of all

supertypes. Then the supertype hierarchy is traversed again,

and for each visited type, the list of all virtually invoked

methods is processed (lines 20–23). This list is collected as

a part of registerAsVirtualInvoked (line 4). For each vir-

tually invoked method in the list, type.resolveMethod is

used to obtain the concrete method (line 21).

Note that essentially the same method resolution is per-

formed by both registerAsVirtualInvoked and regis-

terAsInstantiated but from two di�erent perspectives. It

is not possible to have only one of them. That would re-

quire an ordering in which the register methods that only

mark elements are called before the register methods that

do the resolution. Such an ordering is not possible because

133



MPLR ’23, October 22, 2023, Cascais, Portugal Kozak, Jovanovic, Stancu, Vojnar, and Wimmer.

discovering instantiated types and invoked methods is inter-

connected. Discovering new instantiated types makes new

methods reachable from invokes within already analyzed

methods and vice versa.

Algorithm 1 Rapid type analysis worklist loop.

Input: The set of root methods

Output: All reachable types, methods, and �elds

1: F>A:;8BC ← A>>C"4Cℎ>3B

2: whileF>A:;8BC ≠ ∅ do

3: <4Cℎ>3 ← A4<>E4�8ABC (F>A:;8BC)

4: 8A�A0?ℎ ← ?0AB4"4Cℎ>3 (<4Cℎ>3)

5: BD<<0A~ ← 4GCA02C(D<<0A~ (8A�A0?ℎ)

6: 0??;~(D<<0A~ (BD<<0A~)

7: end while

8: procedure applySummary(BD<<0A~)

9: for< ← BD<<0A~.38A42C�=E>:4B do

10: A468BC4A�B�=E>:43 (<)

11: end for

12: for< ← BD<<0A~.E8ACD0;�=E>:4B do

13: A468BC4A�B+8ACD0;�=E>:43 (<)

14: end for

15: for C ← BD<<0A~.8=BC0=C80C43)~?4B do

16: A468BC4A�B�=BC0=C80C43 (C)

17: end for

18: // ... B8<8;0A ;>>?B 5 >A >Cℎ4A ?0ACB ...

19: end procedure

20: procedure registerAsInvoked(<)

21: if <0A: (<.8B�=E>:43) then

22: F>A:;8BC .033 (<)

23: end if

24: end procedure

25: procedure mark(5 ;06)

26: return 5 ;06.2><?0A4�=3(4C (5 0;B4, CAD4)

27: end procedure

3.3 Invoke Special Handling

Another interesting case that we would like to discuss is in-

vokespecial. Di�erentiating static invokes and special in-

vokes is not necessary for correctness. However, it increases

precision because there are cases when a special invoke is

reachable, but no object is instantiated onwhich suchmethod

can be called. This happens, for example, when analyzing the

method java.lang.Thread.sleep. A simpli�ed version of

the method for Java 20 can be found in Figure 3. It contains

the handling of virtual threads from the project Loom [4]

(instances of VirtualThread) although their usage has to

be explicitly enabled by a command line option. Otherwise,

no virtual thread is ever created, and the content of the if

block is dead code. However, without the special handling

described below, the method VirtualThread.sleep would

Algorithm 2 RTA handling of virtual methods.

1: procedure registerAsVirtualInvoked(<)

2: if <0A: (<.8B+ 8ACD0;�=E>:43) then

3: C ←<.342;0A8=6)~?4

4: C .E8ACD0;�=E>:43"4Cℎ>3B.033 (<)

5: for BD1C ∈ C .8=BC0=C80C43(D1C~?4B do

6: A4B>;E43 ← BD1C .A4B>;E4"4Cℎ>3 (<)

7: A468BC4A�B�=E>:43 (A4B>;E43)

8: end for

9: end if

10: end procedure

11: procedure registerAsInstantiated(C )

12: if <0A: (C .8B�=BC0=C80C43) then

13: for BD?4AC ∈ C .BD?4A)~?4B do

14: BD?4AC .8=BC0=C80C43(D1C~?4B.033 (C)

15: end for

16: for BD?4AC ∈ C .BD?4A)~?4B do

17: for< ∈ BD?4AC .E8ACD0;�=E>:43"4Cℎ>3B do

18: A4B>;E43 ← C .A4B>;E4"4Cℎ>3 (<)

19: A468BC4A�B�=E>:43 (A4B>;E43)

20: end for

21: end for

22: end if

23: end procedure

be considered invoked even when the support for virtual

threads was disabled.

public class Thread {

public static void sleep(long millis) {

...

if (currentThread() instanceof VirtualThread

vthread){

vthread.sleep(millis);

return;

}

...

}

}

Figure 3. Invoke special example.

Due to the above, we handle invokespecial separately as

shown in Algorithm 3. The method registerAsSpecialIn-

voked (lines 1–10) performs two tasks: First, it adds the called

method to the set of invoked special methods on the declar-

ing type (line 4). Then, it calls registerAsInvoked but only

if any subtype of the declaring type has been instantiated so

far (lines 6–8). Similarly to the previously described handling

of virtual methods, it is also necessary to handle the case

where the method is processed �rst and the type instantiated

later. Therefore, extend the method registerAsInstanti-

ated with another loop that iterates over all invoked special

134



Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image MPLR ’23, October 22, 2023, Cascais, Portugal

methods of all supertypes of the newly instantiated type

and processes them via registerAsInvoked (lines 16–18).

This way, we delay the processing of invokespecial only

after a suitable type upon which they can be called has been

instantiated.

Algorithm 3 RTA handling of invoke special.

1: procedure registerAsSpecialInvoked(<)

2: if <0A: (<.8B(?4280;�=E>:43) then

3: C ←<.342;0A8=6)~?4

4: C .B?4280;�=E>:43"4Cℎ>3B.033 (<)

5: if C .8=BC0=C80C43(D1C~?4B.=>C�<?C~ () then

6: A468BC4A�B�=E>:43 (<)

7: end if

8: end if

9: end procedure

10: procedure registerAsInstantiated(C )

11: ...

12: for BD?4AC ∈ C .BD?4A)~?4B do

13: ...

14: for< ∈ BD?4AC .B?4280;�=E>:43"4Cℎ>3B do

15: A468BC4A�B�=E>:43 (<)

16: end for

17: end for

18: end procedure

3.4 Running Example

To demonstrate the idea of RTA with method summaries,

consider again the program in Figure 1. Summaries for all its

methods can be found in Table 2. Note that the empty sets

inside the summaries are omitted for brevity. We stress that

the summaries presented in the table are in fact created lazily

when their corresponding methods are marked as invoked.

The method Hello.main is the entry point, therefore it is

used to initialize the worklist and consequently processed

�rst. Its bytecode is parsed and its summary is created. As

shown in the summary, it instantiates the types Hello and A,

has a virtual invoke of the method Hello.foo, and a direct

invoke of the method Hello.log.

The summary for Hello.main is now applied to update

the state of the analysis. First, the types Hello and A are

marked as instantiated. None of these types or their super-

types have any methods marked as virtually invoked and no

new call targets are discovered. When processing the virtual

method call Hello.foo, the set of all instantiated subtypes of

Hello is considered, which currently has only one element,

Hello itself. The call is then resolved against the type Hello,

which resolves to Hello.foo as the call target. Consequently,

Hello.foo is marked as invoked and added into the work-

list. The invoke of Hello.log is direct, so the corresponding

method is also marked as invoked and added to the worklist.

Table 2. Method summaries for the running example.

Method Method summary

Instantiated types Method invokes

Direct Virtual

main Hello, A log foo

log B

foo I.bar

Table 3. Results of the analyses on the running example.

Analysis Results

Instantiated types Invoked methods

PTA Hello, A, B log, foo, A.bar

RTA Hello, A, B log, foo, {A,B}.bar

When the analysis of Hello.main �nishes, there are two

more methods to process, Hello.foo and Hello.log.

Hello.foo virtually calls the method I.bar. All instan-

tiated subtypes of I are considered as receivers. Currently,

the only instantiated subtype of I is A. Consequently, only

A.bar is marked as invoked and added into the worklist.

The analysis of Hello.log seems straightforward as it

onlymarks the type B as instantiated. However, when travers-

ing the supertypes of B in registerAsInstantiated, the

interface I is considered as well, whose virtually invoked

method I.bar is resolved against B. This resolution identi-

�es B.bar as a call target, which is then marked as invoked

and added into the worklist. This is an example of a loss of

precision compared to the points-to analysis, which would

correctly determine A.bar as the only call target. The results

of running both analyses on the example are presented in

Table 3. The method B.bar, which is included among reach-

able methods due to the imprecision of RTA, is highlighted

in red.

3.5 Heap Snapshotting and Embedded Constants

Application initialization at build time enables a signi�cantly

faster application startup, but it poses a challenge for the anal-

ysis. The initialization is executed already during analysis,

when a given class is marked as reachable. The initialization

code can create arbitrary objects and use them to initialize

static �elds. The object graphs reachable from these �elds

then have to be traversed because they can contain types

not seen in the analyzed methods.

The object graphs are traversed concurrently with the

analysis by a component called the heap scanner. The scan-

ner works in tandem with the analysis and only processes

the values of �elds that are marked as read. Processing other

�elds is not necessary because if the analysis does not dis-

cover any instruction that reads from a �eld, then its value

135



MPLR ’23, October 22, 2023, Cascais, Portugal Kozak, Jovanovic, Stancu, Vojnar, and Wimmer.

can never be read at runtime. The scanner is noti�ed by the

analysis for every read �eld, and, if not already done, it in-

cludes its content into the image heap, and it also processes

all objects transitively reachable from the �eld’s value by

following its �elds that are already marked as read. If the

heap scanner discovers a so-far unseen type, it noti�es the

analysis to treat it as instantiated [27].

The values from static �nal �elds of initialized classes

can be constant folded into the compiled methods during

bytecode parsing. We call such values embedded constants.

Every time such a constant is discovered, it is given as a root

to the heap scanner.

To better explain the concept of constant folding of initial-

ized static �nal �elds, take a look at the example in Figure 4.

Assume that the class EmbeddedConstantsExample is initial-

ized at build time, i.e., that the static initializer is executed

during analysis. The method selectComponent selects some

component based on arbitrary application logic. The result-

ing object is used to initialize the �eld c. The method main

is the entry point. When the analysis of main starts and its

bytecode is parsed, the compiler notices that the �eld access

of c can be constant folded because it was intialized and

assigned a value that never changes (the �eld is declared fi-

nal). Therefore the constant c is embedded into the compiler

IR and then put into the method summary.

public class EmbeddedConstantsExample {

private static final Component c;

static { c = selectComponent(); }

private static Component selectComponent() {...}

public static void main() { c.execute(); }

}

Figure 4. Embedded constants example.

Assume that the method selectComponent is the only

place where the class Component is instantiated and this

method is only reachable from the class initializer of Em-

beddedConstantsExample. Without taking the embedded

constant into consideration, the class Component would not

be considered as instantiated when processing the virtual

call of Component.execute and then its execute method

would not be considered as a call target, even though it is

actually executed at run time. To handle this problem, the

type of the embedded constant c and the types of any other

objects transitively reachable from the constant by following

�elds marked as read are treated as instantiated.

3.6 Parallel Analysis

Algorithm 1 presented above is single-threaded. To enable

parallelism, we replace the explicit worklist with a parallel

task list (see Algorithm 4). Before the analysis is started, a

thread pool is created, which executes all scheduled tasks.

Every root method is passed immediately into registerAs-

Invoked (line 2), whichwas updated in the followingmanner.

If the method mark returns true, the execution of onInvoked

is scheduled as a separate task (line 7) so that any available

thread in the thread pool can execute it. The method onIn-

voked obtains the summary for each invoked method and

applies it to update the state of the analysis.

The methods registerAsVirtualInvoked and regis-

terAsInstantiated of Algorithm 2 do not need to be up-

dated, both of them call registerAsInvoked, which is al-

ready updated to be parallel. The markmethod of Algorithm 1

is already using an atomic operation to ensure that only one

thread processes a newly reachable element even if multiple

threads attempt to mark it concurrently.

Note that Algorithm 2 is already carefully designed to be

safe with regards to parallel execution. In registerAsVir-

tualInvoked, the method must be added to virtualIn-

vokedMethods (line 4) before iterating the instantiated sub-

types (lines 6–9). Likewise, in registerAsInstantiated,

the type must be added to all instantiatedSubtypes sets

(lines 15–17) before iterating the virtualInvokedMethods

(lines 19–24). This guarantees that a concurrent execution of

instantiatedSubtypes and virtualInvokedMethods that

a�ects the same virtual method does not miss to mark any

resolved methods. Indeed, regardless of whether the virtual

method is �rst marked as invoked or the type is �rst marked

as instantiated, the method is registered as invoked either

by the loop on line 6 in registerAsVirtualInvoked or the

loop on line 20 in registerAsInstantiated.

Algorithm 4 Excerpts of the parallel analysis.

1: for< ∈ A>>C"4Cℎ>3B do

2: A468BC4A�B�=E>:43 (<)

3: end for

4: procedure registerAsInvoked(<)

5: if <0A: (<.8B�=E>:43) then

6: B2ℎ43D;4 (() → >=�=E>:43 (<))

7: end if

8: end procedure

9: procedure onInvoked(<)

10: 8A�A0?ℎ ← ?0AB4"4Cℎ>3 (<)

11: B ← 4GCA02C(D<<0A~ (8A�A0?ℎ)

12: 0??;~(D<<0A~ (B)

13: end procedure

3.7 Incremental Analysis

Method summaries are designed so that they can be easily

serialized and reused. Each method summary can be trans-

formed into a purely textual SerializedSummary. Classes,

methods, and �elds are represented as follows:

• Each class is represented by a ClassId, which consists

of the full name of the class.

136



Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image MPLR ’23, October 22, 2023, Cascais, Portugal

• Each method is represented by a MethodId consisting

of the ClassId of the declaring class, themethod name,

and the signature to di�erentiate overloaded methods.

• Each �eld is represented by a FieldId consisting of

the ClassId of the declaring class and the �eld name.

The process of serializing summaries is straightforward

because it only requires to pick speci�c string identi�ers

based on the rules above. On the other hand, the resolu-

tion, which transforms the SerializedSummary back into

the MethodSummary, is more complex.

Resolving ClassIds back into classes is done by looking

them up using a specialized Classloader, which is a special

class responsible for loading classes [12]. Resolving methods

and �elds is a two-step process. First, the declaring class

is resolved. If the class resolution is successful, the algo-

rithm locates the requested �eld/method by iterating over

all declared methods/�elds. We aim to improve the lookup

procedure in the future—the naive iteration is a limitation of

the current implementation only.

Unfortunately, not all summaries can be reused. For a sum-

mary to be reusable, it has to match the following criteria:

• Each identi�er has to be stable. We call an identi�er

stable if its resolution in di�erent analysis runs always

results in the same element. Unfortunately, lambda

names, proxy names and in general names of all gen-

erated classes and methods are potentially unstable.

• All embedded constants have to be trivial. We call

a constant trivial if it is a primitive data type or an

immutable type with a �xed internal structure, such

as java.lang.String. If a given class is immutable

and has a �xed internal structure, the set of types in

its object graph is identical for all instances. There-

fore, it is enough to process only a single instance. For

commonly used types such as java.lang.String, it

is guaranteed that at least one such instance is pro-

cessed when traversing the image heap, and so these

embedded constants can be ignored in summaries.

Note, however, that both of these limitations are merely

implementation-speci�c. They are not inherent to the pro-

posed algorithm and could be lifted in the future. Imple-

menting a proper handling for these two cases would be a

signi�cant engineering e�ort with little added value research-

wise—hence we decided to keep these restrictions for now.

To integrate the reuse of summaries into the previous al-

gorithms, the process of parsing the bytecode and extracting

summaries is moved to a new procedure getSummmary de-

scribed in Algorithm 5. The procedure �rst tries to load a

serialized summary for the given method (line 2). At the mo-

ment, all serialized summaries preserved from previous com-

pilations are stored in a �le, which is loaded into a map as-

sociating MethodIds to corresponding serialized summaries.

However, the summaries could also be fetched from a remote

source or includedwith the libraries the compiled application

is using, so that even the �rst execution in a given context

(user account, host, etc.) can bene�t from incrementality.

Since the method could have changed in between the

builds, it is important to check validity of the summary

(line 3). That can be achieved by storing the hash of the

bytecode instructions along with the summary. Smarter ap-

proaches could take into consideration timestamps on the jar

�les or library version numbers, but since our goal was to es-

timate the bene�t that can be obtained by reusing summaries,

we decided to use only hashing for the initial prototype.

If the SerializedSummary is available and is still valid, it

is resolved back into a MethodSummary based on the rules

described above (line 4). If the resolution is successful, the

summary can be reused, otherwise it is necessary to extract

a new one by parsing the bytecode (lines 9–11).

Algorithm 5 Retrieving a method summary.

1: procedure getSummary(<4Cℎ>3)

2: B4A80;8I43 ← ;>03(D<<0A~ (<4Cℎ>3)

3: if B4A80;8I43 ≠ =D;; 0=3 8B+0;83 (B4A80;8I43) then

4: BD<<0A~ ← A4B>;E4 (B4A80;8I43)

5: if BD<<0A~ ≠ =D;; then

6: return BD<<0A~

7: end if

8: end if

9: 8A�A0?ℎ ← ?0AB4"4Cℎ>3 (<4Cℎ>3)

10: BD<<0A~ ← 4GCA02C(D<<0A~ (8A�A0?ℎ)

11: return BD<<0A~

12: end procedure

Reusing summaries from previous builds allows the anal-

ysis to skip the overhead of parsing. Unfortunately, parsing

still has to occur for the compilation that follows, so until

the compilation pipeline is incremental as well, the bene�ts

can be seen only on the analysis time, not the whole build.

4 Evaluation

This section compares our implementation of RTA and PTA

in the context of GraalVM Native Image. We use Oracle

GraalVM 23.0 based on JDK 20.

The experiments are executed on a dual-socket Intel Xeon

E5-2630 v3 running at 2.40 GHz with 8 physical/16 logical

cores per socket, 128 GiB main memory, running Oracle

Linux Server release 7.3. The benchmark execution is pinned

to one of the two CPUs, and TurboBoost was disabled to

avoid instability. The number of threads is by default set

to 16 with the exception of scalability experiments where it

is a part of the con�guration. Each benchmark is executed

10 times, and the average values are presented. We do not

include the deviation as it is signi�cantly smaller than the

di�erences between PTA and RTA in most cases. We use the

following applications for the evaluation:

137



MPLR ’23, October 22, 2023, Cascais, Portugal Kozak, Jovanovic, Stancu, Vojnar, and Wimmer.

• Helloworld: A simple Java application printing a text

to the standard output. Even such a simple application

actually consists of more than 1,000 classes and 10,000

methods, e.g., for the necessary charset conversion

code and the runtime system.

• DaCapo: A benchmark suite that consists of client-

side Java benchmarks, trying to exercise the complex

interactions between the architecture, compiler, virtual

machine and running application [7]. We use a subset

of the benchmark suite because some benchmarks are

not compatible with our AOT compilation.

• Renaissance: A benchmark suite that consists of real-

world, concurrent, and object-oriented workloads that

exercise various concurrency primitives of the JVM

[16]. We use a subset of the benchmark suite because

some benchmarks are not compatible with our AOT

compilation.

• {Spring, Micronaut, Quarkus} Helloworld: Simple hel-

loworld applications in the corresponding frameworks.

• Quarkus Registry [17]: A large real-world application

using the Quarkus framework. It is used to host the

Quarkus extension registry.

• Micronaut MuShop [15]: A large demo application us-

ing the Micronaut framework. We use three services:

Order, Payment, and User.

• Spring Petclinic2: A popular demo application of the

Spring framework [26].

• Micronaut Shopcart: A demo application of the Micro-

naut framework [13] performing similar tasks to the

Petclinic but in a di�erent domain.

• Quarkus Tika3: An extension to the Quarkus Frame-

work [18] that provides functionality to parse docu-

ments using the Apache Tika library4.

The results are presented in Table 4. The number of reach-

able methods has been divided by 1,000 and similar conver-

sions were performed to present values in seconds and MB.

The values were rounded and then compared. For Dacapo

and Renaissance, the table presents a subset of the bench-

marks only (a few small, a few mid-sized and a few of the

biggest). The data for all benchmarks can be found in the ap-

pendix5. We highlight Spring Petclinic in violet as we discuss

its results often.

4.1 Reachable Elements

In order to get an insight into the actual size of our bench-

marks, wemeasured the number of reachable types, methods,

and �elds. Using metrics such as lines of code or the num-

ber of classes could be misleading because only reachable

elements are analyzed and compiled. Since these metrics are

2https://github.com/spring-projects/spring-petclinic
3https://github.com/quarkiverse/quarkus-tika
4https://tika.apache.org/
5Extended version of the paper including the appendix can be found at [11].

interconnected and follow the same pattern, we decided to

present the number of reachable methods as the main metric.

This number directly in�uences not only the scope of the

analysis (how many methods need to be processed) but also

the workload of the compilation phase afterwards. Details

about types and �elds can be found in the appendix.

We can immediately observe that the imprecision of RTA

increases the number of reachable methods for all bench-

marks, as was expected. However, an interesting trend can be

observed. Whereas there is a signi�cant di�erence between

reachable elements for HelloWorld and the other smaller

Renaissance and Dacapo benchmarks, the di�erence gets

usually signi�cantly smaller for the bigger applications. Nev-

ertheless, one cannot say that the di�erence is uniformly

decreasing with the increasing size of the applications. In-

deed, for example, the number of reachable methods for

Quarkus Tika is increased by 6 %, while a much bigger Re-

naissance chi-square is increased by 8%. This suggests

that not only the size of the compiled application but also

its structure in�uence the performance and precision.

4.2 Analysis Time

The time that is reported by GraalVM Native Image as the

analysis time includes the time spent running application

initialization code. We treat this step as a constant factor

that cannot be directly improved by di�erent analysis meth-

ods. In order to measure the in�uence on analysis more

precisely, we subtracted it from the overall analysis time. It

can be seen that RTA outperforms PTA on all benchmarks

apart from the small ones. The most notable savings are

for Spring Petclinic, for which the analysis time is re-

duced by 64%. The biggest Renaissance benchmarks log-

regression, and dec-tree also exhibit a signi�cant anal-

ysis time reduction. Unfortunately, these benchmarks are

not fully supported by GraalVM Native Image and currently

fail during compilation. We have decided to include at least

the analysis time of these benchmarks because they are the

biggest of our suite in terms of reachable methods.

4.3 Build Time

Since the reduced precision of RTA puts more workload on

the compilation phase that follows, we also measured the

whole build time. It can be seen that while the imprecision of

RTA indeed negatively in�uences small applications such as

HelloWorld or smaller benchmarks from the Renaissance

and Dacapo bench suites, for bigger applications the time

saved in the analysis outweighs the extra compilation time.

The biggest savings were again obtained for Spring Pet-

clinic where the overall build was reduced by 35 %.

4.4 Binary Size

As another way to compare the precision of PTA and RTA,

we measured the size of the compiled image. It can be seen

that the size increases for all benchmarks and, in general,

138



Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image MPLR ’23, October 22, 2023, Cascais, Portugal

Table 4. Detailed statistics of the evaluated benchmarks.

Reachable Methods Analysis Time [s] Total time [s] Binary size [MB]

Suite Benchmark PTA RTA PTA RTA PTA RTA PTA RTA

Console helloworld 18 +17% 14 +21% 36 +17% 13 +23%

Dacapo

avrora 24 +25% 12 -8% 51 +6% 23 +30%

fop 94 +4% 46 -30% 128 -10% 105 +11%

jython 71 +8% 55 -35% 140 -26% 134 +9%

luindex 26 +23% 13 -8% 54 +7% 32 +25%

Microservices

micronaut-helloworld-wrk 74 +4% 34 -32% 88 -9% 45 +18%

mushop:order 168 +2% 102 -59% 209 -30% 104 +13%

mushop:payment 82 +4% 36 -33% 91 -10% 50 +14%

mushop:user 115 +3% 57 -44% 135 -18% 76 +13%

petclinic-wrk 207 +4% 159 -64% 297 -35% 144 +15%

quarkus-helloworld-wrk 52 +6% 18 -22% 69 -3% 50 +4%

quarkus:registry 111 +5% 49 -39% 126 -16% 69 +19%

spring-helloworld-wrk 67 +4% 30 -33% 87 -10% 47 +13%

tika-wrk 82 +6% 29 -28% 117 -6% 88 +6%

Renaissance

chi-square 173 +8% 129 -60% 260 -30% 100 +17%

dec-tree 324 +6% 2009 -95% X X X X

future-genetic 27 +22% 15 0% 44 +5% 19 +21%

gauss-mix 189 +8% 146 -61% 286 -32% 107 +17%

log-regression 334 +7% 2215 -95% X X X X

page-rank 171 +8% 129 -60% 258 -31% 119 +13%

reactors 30 +13% 19 +16% 47 +11% 19 +21%

scala-stm-bench7 30 +20% 19 +26% 49 +14% 19 +21%

the size of smaller images increased more. However, there

does not seem to be a clear pattern. That can be attributed to

the fact that the size of the image is in�uenced by multiple

factors (such as the metadata, embedded resources, etc.), not

just the results of the analysis.

4.5 Scalability with CPU Cores

To evaluate how PTA and RTA scale with the number of

available CPU cores, we executed each benchmark with 1,

4, 8, and 16 threads. The results for several representative

benchmarks are presented in Figure 5a, and Figure 5b, and

the rest can be found in the appendix.

By looking at the �gures, it can be seen that RTA outper-

formed PTA in most experiments and performed especially

well in scenarios with a reduced number of threads. For ex-

ample, the analysis time of Spring Petclinic using only a

single thread was reduced by 76 %.

Conversely, as the number of threads increases, the di�er-

ence is reduced in most benchmarks. It suggests that the cur-

rent implementation of RTA might contain some scalability

bottlenecks. While the implementation of PTA is production-

ready and has been optimized for many years, our imple-

mentation of RTA is still a research prototype. Therefore,

the existence of such scalability bottlenecks is not surprising

and suggests that even better results could be achieved if

more time is invested into pro�ling and optimization of the

analysis.

4.6 Runtime Performance

Since our implementation of RTA is meant for the develop-

ment mode and not for production deployments, we focused

mainly on the build-time characteristics. In spite of that, we

have also collected runtime data for Renaissance and Da-

capo to provide a more complete picture. For space reasons,

we provide only aggregated statistics. We observed that the

time to execute a standard workload for the benchmarks was

increased on average by 10 % across all benchmarks, 11 % for

Reinaissance, and 8 % for Dacapo. The biggest increase was

26 % for the Renaissance future-genetic benchmark.

Even though such an increase is non-negligible, as already

said, RTA is meant to be used for development and testing

where such a performance decrease is justi�ed by the reduced

build time. If runtime performance is an important criterion,

PTA should be considered instead.

4.7 Incrementality

We have implemented the approach described in Section 3.7

and noted that more than 60% of summaries can be reused

139



MPLR ’23, October 22, 2023, Cascais, Portugal Kozak, Jovanovic, Stancu, Vojnar, and Wimmer.

Analysis Time [s]

Mi:hello
Mu:order

Mu:payment
Mu:user
Q:hello

Q:registry
Q:Tika
S:hello

S:petclinic
R:chi-square

R:dec-tree
R:gauss-mix

R:log-regression
R:page-rank

R:reactors
R:scala-stm-bench

20 40 60 80 10
0

20
0

40
0

60
0

80
0

10
00

20
00

40
00

PTA 1 PTA 4 PTA 8 PTA 16

(a) Scalability PTA results.

Analysis Time [s]

Mi:hello
Mu:order

Mu:payment
Mu:user
Q:hello

Q:registry
Q:Tika
S:hello

S:petclinic
R:chi-square

R:dec-tree
R:gauss-mix

R:log-regression
R:page-rank

R:reactors
R:scala-stm-bench

20 40 60 80 10
0

20
0

40
0

60
0

80
0

10
00

20
00

40
00

RTA 1 RTA 4 RTA 8 RTA 16

(b) Scalability RTA results.

Figure 5. Scalability results (log scale).

for Spring Petclinic, one of the biggest benchmarks, be-

cause they satisfy the necessary requirements. Unfortunately,

no real bene�ts were visible when reusing them. It turned

out that even though 60% of the methods did not have to

be parsed, parsing these methods only constituted about

33 % of the overall parse time. The methods that would ben-

e�t from incrementality the most in our benchmarks are

unfortunately the same methods that contain non-trivial em-

bedded constants. As we discussed in Section 3.7, both of

these limitations are only implementation speci�c. They are

not inherent to the proposed algorithm and as it turned out

that they are blocking the bene�ts.

5 Related Work

In [6, 23], the authors describedmultiple di�erent approaches

(including RTA) on how to construct the application call

graph, which is a necessary step for computing reachable

program elements. Our approach is an extension of RTA,

which is designed to be parallel, incremental, and also pro-

vides support for heap snapshotting, a feature necessary for

enabling class initialization at build time. In [23], the au-

thors also experimented with Variable-Type Analysis, which

seems to be similar to the points-to analysis used in GraalVM

Native Image. Both works provided only a simple textual

description of rapid type analysis without any pseudocode.

On the contrary, we provide pseudocode and detailed de-

scription for all key components.

Tip and Palsberg gave an overview of various propagation-

based call-graph construction algorithms, again including

RTA, in [24]. Using the terminology from their article, the

points-to analysis in Native Image could be classi�ed as 0-

CFA. The authors also introduced four new algorithms CTA,

FTA, MTA, and XTA that lie between RTA and 0-CFA in the

design space. Based on the experimental evaluation, they

concluded that their new algorithms, while in theory more

powerful than RTA, have only a minor e�ect with regards to

the number of reachable elements (up to less 3 % reachable

methods), while being up to 8.3 times slower than RTA. On

the other hand, the amount of call graph edges and uniquely

resolved polymorphic call sites can be reduced by up to 29 %

and 26.3 %, respectively. Since the goal of our research was

to reduce the analysis time, and performance is not a priority

in development builds, RTA seems to �t our use case best.

In [25], B. Titzer proposed the Reachable Method Analysis,

which is similar to our core algorithm presented in Algo-

rithm 1. Our contributions on top of his analysis are using

method summaries, incremental approach, and experimental

evaluation of PTA and RTA in the context of Native Image.

Even though the analysis implemented in GraalVM Na-

tive Image is context-insensitive and contains several opti-

mizations which aim to increase scalability by sacri�cing

precision [27], the analysis can still take minutes for bigger

applications. Our version of RTA can reduce the analysis

time by up to 64 %.

Grech et al. used heap snapshots to improve the perfor-

mance and precision of whole program pointer analysis [8].

However, their analysis is intentionally incomplete; It might

miss some reachable program elements. Unfortunately, this

is unacceptable for Native Image because if a method that

was not marked reachable by static analysis is executed at

runtime, it is a fatal error.

There are several tools that compile JVM-based languages

into native binaries. Kotlin Native [2] and Scala Native [3]

are two examples of such. However, both of them support

only a speci�c language. We support any language that can

be compiled into JVM bytecode. Also, the analysis they use

to determine reachable elements is not clearly speci�ed.

140



Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image MPLR ’23, October 22, 2023, Cascais, Portugal

The OVM Real-time Java VM [5] AOT compiles Java ap-

plications into executable images. The OVM compiler uses

an analysis method called Reaching Types Analysis to detect

what parts of code are reachable, but the authors do not

specify any details about the analysis in the paper.

6 Conclusions

In this paper, we have introduced a new variant of rapid type

analysis (RTA), which is parallel, incremental, and supports

heap snapshotting. The incrementality is enabled by the use

of method summaries, which can be serialized and reused

between multiple builds. We have described the analysis by

providing pseudocode for all key components.

The analysis was implemented and evaluated in the con-

text of GraalVM Native Image. RTA was then compared

against the poins-to analysis currently used in GraalVM Na-

tive Image. We used the Java benchmark suites Renaissance

and Dacapo along with example applications for the main-

stream Java microservice frameworks Spring, Micronaut,

and Quarkus. The experimental evaluation showed, e.g., that

RTA can reduce the analysis time of the Spring Petclinic

demo application by 64 % at the cost of increasing the image

size by 15 %.

We also experimented with the scalability of both our RTA

and points-to analysis wrt. the number of processor cores

showing that, for a reduced number of threads such as 1 or 4,

the savings in the analysis time can be even greater, making

RTA a good choice for constrained environments such as

GitHub Actions or similar CI pipelines.

In the future, we plan to lift the restrictions currently

imposed on which method summaries can be reused. On

top of that, we plan to extend the incremental analysis by

a concept of summary aggregation whose goal is to merge

summaries of directly connected methods. Fewer but larger

summaries should be bene�cial when method summaries are

serialized and reused, boosting the e�ect of incrementality.

Acknowledgments

This work has been supported by the Czech Science Foun-

dation project 23-06506S and the FIT BUT internal project

FIT-S-23-8151. We thank all members of the GraalVM team

at Oracle Labs and the Institute for System Software at the

Johannes Kepler University Linz for their support and con-

tributions.

Oracle and Java are registered trademarks of Oracle and/or

its a�liates. Other names may be trademarks of their respec-

tive owners.

References
[1] 2022. GitHub Actions. https://github.com/features/actions. Accessed:

2022-11-10.

[2] 2022. Kotlin Native. https://kotlinlang.org/docs/native-overview.html.

Accessed: 2022-10-24.

[3] 2022. Scala Native. https://scala-native.org/en/stable/. Accessed:

2022-10-24.

[4] 2023. Project Loom. https://openjdk.org/projects/loom/. Accessed:

2023-05-02.

[5] Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack,

David Holmes, Filip Pizlo, Edward Pla, Marek Prochazka, and Jan

Vitek. 2007. A Real-Time Java Virtual Machine with Applications in

Avionics. 7, 1, Article 5 (dec 2007), 49 pages. h�ps://doi.org/10.1145/

1324969.1324974

[6] David F. Bacon and Peter F. Sweeney. 1996. Fast Static Analysis of

C++ Virtual Function Calls. SIGPLAN Not. 31, 10 (oct 1996), 324–341.

h�ps://doi.org/10.1145/236338.236371

[7] Stephen M. Blackburn, Robin Garner, Chris Ho�mann, Asjad M.

Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel

Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony

Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,

Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben

Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking

Development and Analysis. In Proceedings of the 21st Annual ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Lan-

guages, and Applications (Portland, Oregon, USA) (OOPSLA ’06). As-

sociation for Computing Machinery, New York, NY, USA, 169–190.

h�ps://doi.org/10.1145/1167473.1167488

[8] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis

Smaragdakis. 2018. Shooting from the Heap: Ultra-Scalable Static

Analysis with Heap Snapshots. In Proceedings of the 27th ACM SIGSOFT

International Symposium on Software Testing and Analysis (Amsterdam,

Netherlands) (ISSTA 2018). Association for ComputingMachinery, New

York, NY, USA, 198–208. h�ps://doi.org/10.1145/3213846.3213860

[9] Michael Hind. 2001. Pointer Analysis: Haven’tWe Solved This Problem

Yet?. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on

Program Analysis for Software Tools and Engineering (Snowbird, Utah,

USA) (PASTE ’01). Association for Computing Machinery, New York,

NY, USA, 54–61. h�ps://doi.org/10.1145/379605.379665

[10] Urs Hölzle, Craig Chambers, and David Ungar. 1991. Optimizing

Dynamically-Typed Object-Oriented Languages With Polymorphic

Inline Caches. In Proceedings of the European Conference on Object-

Oriented Programming (ECOOP ’91). Springer-Verlag, Berlin, Heidel-

berg, 21–38.

[11] David Kozak, Vojin Jovanovic, Codrut Stancu, Tomas Vojnar, and

Christian Wimmer. 2023. Comparing Rapid Type Analysis with Points-

To Analysis in GraalVM Native Image (with appendix). Technical

Report. Brno University of Technology and Oracle Labs. h�ps:

//arxiv.org/abs/2308.16566.

[12] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley, and Daniel

Smith. 2023. The Java Virtual Machine Speci�cation, Java SE 20 Edition.

h�ps://docs.oracle.com/javase/specs/jvms/se20/jvms20.pdf

[13] Micronaut foundation. 2023. Micronaut. h�ps://micronaut.io

[14] Oracle. 2023. GraalVM. h�ps://www.graalvm.org/

[15] Oracle. 2023. Micronaut MuShop. h�ps://github.com/oracle-

quickstart/oci-micronaut/

[16] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Du-

boscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex

Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019.

Renaissance: Benchmarking Suite for Parallel Applications on the

JVM. In Proceedings of the ACM SIGPLAN Conference on Program-

ming Language Design and Implementation. ACM Press, 31–47. h�ps:

//doi.org/10.1145/3314221.3314637

[17] Quarkus. 2023. Extension Registry Application. h�ps://github.com/

quarkusio/registry.quarkus.io

[18] RedHat. 2023. Quarkus. h�ps://quarkus.io

[19] Barbara G. Ryder. 2003. Dimensions of Precision in Reference Analysis

of Object-Oriented Programming Languages. In Compiler Construction,

141

https://doi.org/10.1145/1324969.1324974
https://doi.org/10.1145/1324969.1324974
https://doi.org/10.1145/236338.236371
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/3213846.3213860
https://doi.org/10.1145/379605.379665
https://arxiv.org/abs/2308.16566
https://arxiv.org/abs/2308.16566
https://docs.oracle.com/javase/specs/jvms/se20/jvms20.pdf
https://micronaut.io
https://www.graalvm.org/
https://github.com/oracle-quickstart/oci-micronaut/
https://github.com/oracle-quickstart/oci-micronaut/
https://doi.org/10.1145/3314221.3314637
https://doi.org/10.1145/3314221.3314637
https://github.com/quarkusio/registry.quarkus.io
https://github.com/quarkusio/registry.quarkus.io
https://quarkus.io


MPLR ’23, October 22, 2023, Cascais, Portugal Kozak, Jovanovic, Stancu, Vojnar, and Wimmer.

Görel Hedin (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 126–

137.

[20] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis.

Foundations and Trends® in Programming Languages 2, 1 (2015), 1–69.

h�ps://doi.org/10.1561/2500000014

[21] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and

Eran Yahav. 2013. Alias Analysis for Object-Oriented Programs. Springer

Berlin Heidelberg, Berlin, Heidelberg, 196–232. h�ps://doi.org/10.

1007/978-3-642-36946-9_8

[22] Lukas Stadler, Thomas Würthinger, Doug Simon, Christian Wimmer,

and Hanspeter Mössenböck. 2013. Graal IR : An Extensible Declarative

Intermediate Representation.

[23] Vijay Sundaresan, Laurie Hendren, Chrislain Raza�mahefa, Raja

Vallée-Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. 2000.

Practical Virtual Method Call Resolution for Java. In Proceedings of

the 15th ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (Minneapolis, Minnesota, USA)

(OOPSLA ’00). Association for Computing Machinery, New York, NY,

USA, 264–280. h�ps://doi.org/10.1145/353171.353189

[24] Frank Tip and Jens Palsberg. 2000. Scalable Propagation-Based Call

Graph Construction Algorithms. In Proceedings of the 15th ACM SIG-

PLAN Conference on Object-Oriented Programming, Systems, Languages,

and Applications (Minneapolis, Minnesota, USA) (OOPSLA ’00). As-

sociation for Computing Machinery, New York, NY, USA, 281–293.

h�ps://doi.org/10.1145/353171.353190

[25] Ben L. Titzer. 2006. Virgil: Objects on the Head of a Pin. SIGPLAN Not.

41, 10 (oct 2006), 191–208. h�ps://doi.org/10.1145/1167515.1167489

[26] VMWare. 2023. Spring. h�ps://spring.io/

[27] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul

Wögerer, Peter B. Kessler, Oleg Pliss, and Thomas Würthinger. 2019.

Initialize Once, Start Fast: Application Initialization at Build Time.

Proc. ACM Program. Lang. 3, OOPSLA, Article 184 (oct 2019), 29 pages.

h�ps://doi.org/10.1145/3360610

Received 2023-06-29; accepted 2023-07-31

142

https://doi.org/10.1561/2500000014
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/353171.353189
https://doi.org/10.1145/353171.353190
https://doi.org/10.1145/1167515.1167489
https://spring.io/
https://doi.org/10.1145/3360610

	Abstract
	1 Introduction
	2 Overview of GraalVM Native Image
	2.1 Points-to Analysis in GraalVM Native Image

	3 RTA with Method Summaries
	3.1 Core Algorithm and Data Structures
	3.2 Invoke Virtual Handling
	3.3 Invoke Special Handling
	3.4 Running Example
	3.5 Heap Snapshotting and Embedded Constants
	3.6 Parallel Analysis
	3.7 Incremental Analysis

	4 Evaluation
	4.1 Reachable Elements
	4.2 Analysis Time
	4.3 Build Time
	4.4 Binary Size
	4.5 Scalability with CPU Cores
	4.6 Runtime Performance
	4.7 Incrementality

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

